269 resultados para wireless communication
Resumo:
Decentralised sensor networks typically consist of multiple processing nodes supporting one or more sensors. These nodes are interconnected via wireless communication. Practical applications of Decentralised Data Fusion have generally been restricted to using Gaussian based approaches such as the Kalman or Information Filter This paper proposes the use of Parzen window estimates as an alternate representation to perform Decentralised Data Fusion. It is required that the common information between two nodes be removed from any received estimates before local data fusion may occur Otherwise, estimates may become overconfident due to data incest. A closed form approximation to the division of two estimates is described to enable conservative assimilation of incoming information to a node in a decentralised data fusion network. A simple example of tracking a moving particle with Parzen density estimates is shown to demonstrate how this algorithm allows conservative assimilation of network information.
Resumo:
In 1999 Richards compared the accuracy of commercially available motion capture systems commonly used in biomechanics. Richards identified that in static tests the optical motion capture systems generally produced RMS errors of less than 1.0 mm. During dynamic tests, the RMS error increased to up to 4.2 mm in some systems. In the last 12 years motion capture systems have continued to evolve and now include high-resolution CCD or CMOS image sensors, wireless communication, and high full frame sampling frequencies. In addition to hardware advances, there have also been a number of advances in software, which includes improved calibration and tracking algorithms, real time data streaming, and the introduction of the c3d standard. These advances have allowed the system manufactures to maintain a high retail price in the name of advancement. In areas such as gait analysis and ergonomics many of the advanced features such as high resolution image sensors and high sampling frequencies are not required due to the nature of the task often investigated. Recently Natural Point introduced low cost cameras, which on face value appear to be suitable as at very least a high quality teaching tool in biomechanics and possibly even a research tool when coupled with the correct calibration and tracking software. The aim of the study was therefore to compare both the linear accuracy and quality of angular kinematics from a typical high end motion capture system and a low cost system during a simple task.
Resumo:
A Cooperative Collision Warning System (CCWS) is an active safety techno- logy for road vehicles that can potentially reduce traffic accidents. It provides a driver with situational awareness and early warnings of any possible colli- sions through an on-board unit. CCWS is still under active research, and one of the important technical problems is safety message dissemination. Safety messages are disseminated in a high-speed mobile environment using wireless communication technology such as Dedicated Short Range Communication (DSRC). The wireless communication in CCWS has a limited bandwidth and can become unreliable when used inefficiently, particularly given the dynamic nature of road traffic conditions. Unreliable communication may significantly reduce the performance of CCWS in preventing collisions. There are two types of safety messages: Routine Safety Messages (RSMs) and Event Safety Messages (ESMs). An RSM contains the up-to-date state of a vehicle, and it must be disseminated repeatedly to its neighbouring vehicles. An ESM is a warning message that must be sent to all the endangered vehi- cles. Existing RSM and ESM dissemination schemes are inefficient, unscalable, and unable to give priority to vehicles in the most danger. Thus, this study investigates more efficient and scalable RSM and ESM dissemination schemes that can make use of the context information generated from a particular traffic scenario. Therefore, this study tackles three technical research prob- lems, vehicular traffic scenario modelling and context information generation, context-aware RSM dissemination, and context-aware ESM dissemination. The most relevant context information in CCWS is the information about possible collisions among vehicles given a current vehicular traffic situation. To generate the context information, this study investigates techniques to model interactions among multiple vehicles based on their up-to-date motion state obtained via RSM. To date, there is no existing model that can represent interactions among multiple vehicles in a speciffic region and at a particular time. The major outcome from the first problem is a new interaction graph model that can be used to easily identify the endangered vehicles and their danger severity. By identifying the endangered vehicles, RSM and ESM dis- semination can be optimised while improving safety at the same time. The new model enables the development of context-aware RSM and ESM dissemination schemes. To disseminate RSM efficiently, this study investigates a context-aware dis- semination scheme that can optimise the RSM dissemination rate to improve safety in various vehicle densities. The major outcome from the second problem is a context-aware RSM dissemination protocol. The context-aware protocol can adaptively adjust the dissemination rate based on an estimated channel load and danger severity of vehicle interactions given by the interaction graph model. Unlike existing RSM dissemination schemes, the proposed adaptive scheme can reduce channel congestion and improve safety by prioritising ve- hicles that are most likely to crash with other vehicles. The proposed RSM protocol has been implemented and evaluated by simulation. The simulation results have shown that the proposed RSM protocol outperforms existing pro- tocols in terms of efficiency, scalability and safety. To disseminate ESM efficiently, this study investigates a context-aware ESM dissemination scheme that can reduce unnecessary transmissions and deliver ESMs to endangered vehicles as fast as possible. The major outcome from the third problem is a context-aware ESM dissemination protocol that uses a multicast routing strategy. Existing ESM protocols use broadcast rout- ing, which is not efficient because ESMs may be sent to a large number of ve- hicles in the area. Using multicast routing improves efficiency because ESMs are sent only to the endangered vehicles. The endangered vehicles can be identified using the interaction graph model. The proposed ESM protocol has been implemented and evaluated by simulation. The simulation results have shown that the proposed ESM protocol can prevent potential accidents from occurring better than existing ESM protocols. The context model and the RSM and ESM dissemination protocols can be implemented in any CCWS development to improve the communication and safety performance of CCWS. In effect, the outcomes contribute to the realisation of CCWS that will ultimately improve road safety and save lives.
Resumo:
Utilization of multiport-antennas represents an appropriate way for the mitigation of multi-path fading in wireless communication systems. However, to obtain low correlation between the signals from different antenna ports and to prevent gain reduction by cross-talk, large antenna elements spacing is expected. Polarization diversity allows signal separation even with small antenna spacing. Although it is effective, polarization diversity alone does not suffice once the number of antennas exceeds the number of orthogonal polarizations. This paper presents an approach which combines a novel array concept with the use of dual polarization. The theory is verified by a compact dual polarized patch antenna array, which consists of four elements and a decoupling network.
Resumo:
Cognitive radio is an emerging technology proposing the concept of dynamic spec- trum access as a solution to the looming problem of spectrum scarcity caused by the growth in wireless communication systems. Under the proposed concept, non- licensed, secondary users (SU) can access spectrum owned by licensed, primary users (PU) so long as interference to PU are kept minimal. Spectrum sensing is a crucial task in cognitive radio whereby the SU senses the spectrum to detect the presence or absence of any PU signal. Conventional spectrum sensing assumes the PU signal as ‘stationary’ and remains in the same activity state during the sensing cycle, while an emerging trend models PU as ‘non-stationary’ and undergoes state changes. Existing studies have focused on non-stationary PU during the transmission period, however very little research considered the impact on spectrum sensing when the PU is non-stationary during the sensing period. The concept of PU duty cycle is developed as a tool to analyse the performance of spectrum sensing detectors when detecting non-stationary PU signals. New detectors are also proposed to optimise detection with respect to duty cycle ex- hibited by the PU. This research consists of two major investigations. The first stage investigates the impact of duty cycle on the performance of existing detec- tors and the extent of the problem in existing studies. The second stage develops new detection models and frameworks to ensure the integrity of spectrum sensing when detecting non-stationary PU signals. The first investigation demonstrates that conventional signal model formulated for stationary PU does not accurately reflect the behaviour of a non-stationary PU. Therefore the performance calculated and assumed to be achievable by the conventional detector does not reflect actual performance achieved. Through analysing the statistical properties of duty cycle, performance degradation is proved to be a problem that cannot be easily neglected in existing sensing studies when PU is modelled as non-stationary. The second investigation presents detectors that are aware of the duty cycle ex- hibited by a non-stationary PU. A two stage detection model is proposed to improve the detection performance and robustness to changes in duty cycle. This detector is most suitable for applications that require long sensing periods. A second detector, the duty cycle based energy detector is formulated by integrat- ing the distribution of duty cycle into the test statistic of the energy detector and suitable for short sensing periods. The decision threshold is optimised with respect to the traffic model of the PU, hence the proposed detector can calculate average detection performance that reflect realistic results. A detection framework for the application of spectrum sensing optimisation is proposed to provide clear guidance on the constraints on sensing and detection model. Following this framework will ensure the signal model accurately reflects practical behaviour while the detection model implemented is also suitable for the desired detection assumption. Based on this framework, a spectrum sensing optimisation algorithm is further developed to maximise the sensing efficiency for non-stationary PU. New optimisation constraints are derived to account for any PU state changes within the sensing cycle while implementing the proposed duty cycle based detector.
Resumo:
Intelligent Transport Systems (ITS) resembles the infrastructure for ubiquitous computing in the car. It encompasses a) all kinds of sensing technologies within vehicles as well as road infrastructure, b) wireless communication protocols for the sensed information to be exchanged between vehicles (V2V) and between vehicles and infrastructure (V2I), and c) appropriate intelligent algorithms and computational technologies that process these real-time streams of information. As such, ITS can be considered a game changer. It provides the fundamental basis of new, innovative concepts and applications, similar to the Internet itself. The information sensed or gathered within or around the vehicle has led to a variety of context-aware in-vehicular technologies within the car. A simple example is the Anti-lock Breaking System (ABS), which releases the breaks when sensors detect that the wheels are locked. We refer to this type of context awareness as vehicle/technology awareness. V2V and V2I communication, often summarized as V2X, enables the exchange and sharing of sensed information amongst cars. As a result, the vehicle/technology awareness horizon of each individual car is expanded beyond its observable surrounding, paving the way to technologically enhance such already advanced systems. In this chapter, we draw attention to those application areas of sensing and V2X technologies, where the human (driver), the human’s behavior and hence the psychological perspective plays a more pivotal role. The focal points of our project are illustrated in Figure 1: In all areas, the vehicle first (1) gathers or senses information about the driver. Rather than to limit the use of such information towards vehicle/technology awareness, we see great potential for applications in which this sensed information is then (2) fed back to the driver for an increased self-awareness. In addition, by using V2V technologies, it can also be (3) passed to surrounding drivers for an increased social awareness, or (4), pushed even further, into the cloud, where it is collected and visualized for an increased, collective urban awareness within the urban community at large, which includes all city dwellers.
Resumo:
While substantial research on intelligent transportation systems has focused on the development of novel wireless communication technologies and protocols, relatively little work has sought to fully exploit proximity-based wireless technologies that passengers actually carry with them today. This paper presents the real-world deployment of a system that exploits public transit bus passengers’ Bluetooth-capable devices to capture and reconstruct micro- and macro-passenger behavior. We present supporting evidence that approximately 12% of passengers already carry Bluetooth-enabled devices and that the data collected on these passengers captures with almost 80 % accuracy the daily fluctuation of actual passengers flows. The paper makes three contributions in terms of understanding passenger behavior: We verify that the length of passenger trips is exponentially bounded, the frequency of passenger trips follows a power law distribution, and the microstructure of the network of passenger movements is polycentric.
Resumo:
In this paper we analyse the effects of highway traffic flow parameters like vehicle arrival rate and density on the performance of Amplify and Forward (AF) cooperative vehicular networks along a multi-lane highway under free flow state. We derive analytical expressions for connectivity performance and verify them with Monte-Carlo simulations. When AF cooperative relaying is employed together with Maximum Ratio Combining (MRC) at the receivers the average route error rate shows 10-20 fold improvement compared to direct communication. A 4-8 fold increase in maximum number of traversable hops can also be observed at different vehicle densities when AF cooperative communication is used to strengthen communication routes. However the theorical upper bound of maximum number of hops promises higher performance gains.
Resumo:
This thesis analyses the performance bounds of amplify-and-forward relay channels which are becoming increasingly popular in wireless communication applications. The statistics of cascaded Nakagami-m fading model which is a major obstacle in evaluating the outage of wireless networks is analysed using Mellin transform. Furthermore, the upper and the lower bounds for the ergodic capacity of the slotted amplify-and-forward relay channel, for finite and infinite number of relays are derived using random matrix theory. The results obtained will enable wireless network designers to optimize the network resources, benefiting the consumers.
Resumo:
Capacity of current and future high data rate wireless communications depend significantly on how well changes in the wireless channel are predicted and tracked. Generally, this can be estimated by transmitting known symbols. However, this increases overheads if the channel varies over time. Given today’s bandwidth demand and the increased necessity for mobile wireless devices, the contributions of this research are very significant. This study has developed a novel and efficient channel tracking algorithm that can recursively update the channel estimation for wireless broadband communications reducing overheads, therefore increasing the speed of wireless communication systems.
Resumo:
This work elaborates on the topic of decision making for driverless city vehicles, particularly focusing on the aspects on how to develop a reliable approach which meets the requirements of safe city traffic. Decision making in this context refers to the problem of identifying the most appropriate driving maneuver to be performed in a given traffic situation. The overall decision making problem is decomposed into two consecutive stages. The first stage is safety-crucial, representing the decision regarding the set of feasible driving maneuvers. The second stage represents the decision regarding the most appropriate driving maneuver from the set of feasible ones. The developed decision making approach has been implemented in C++ and initially tested in a 3D simulation environment and, thereafter, in real-world experiments. The real-world experiments also included the integration of wireless communication between vehicles.
Resumo:
Handover performance is critical to support real-time traffic applications in wireless network communications. The longer the handover delay is, the longer an Mobile Node (MN) is prevented from sending and receiving any data packet. In real-time network communication applications, such as VoIP and video-conference, a long handover delay is often unacceptable. In order to achieve better handover performance, Fast Proxy Mobile IPv6 (FPMIPv6) has been standardised as an improvement to the original Proxy Mobile IPv6 (PMIPv6) in the Internet Engineering Task Force (IETF). The FPMIPv6 adopts a link layer triggering mechanism to perform two modes of operation: predictive and reactive modes. Using the link layer triggering, the handover performance of the FPMIPv6 can be improved in the predictive mode. However, an unsuccessful predictive handover operation will lead to activation of a reactive handover. In the reactive mode, MNs still experience long handover delays and a large amount of packet loss, which significantly degrade the handover performance of the FPMIPv6. Addressing this problem, this thesis presents an Enhanced Triggering Mechanism (ETM) in the FPMIPv6 to form an enhanced FPMIPv6 (eFPMIPv6). The ETM reduces the most time consuming processes in the reactive handover: the failed Handover Initiate (HO-Initiate) delay and bidirectional tunnel establishment delay. Consequently, the overall handover performance of the FPMIPv6 is enhanced in the eFPMIPv6. To show the advantages of the proposed eFPMIPv6, a theoretical analysis is carried out to mathematically model the performance of PMIPv6, FPMIPv6 and eFPMIPv6. Extensive case studies are conducted to validate the effectiveness of the presented eFPMIPv6 mechanism. They are carried out under various scenarios with changes in network link delay, traffic load, number of hops and MN moving velocity. The case studies show that the proposed mechanism ETM reduces the reactive handover delay, and the presented eFPMIPv6 outperforms the PMIPv6 and FPMIPv6 in terms of the overall handover performance.
Resumo:
The internet infrastructure which supports high data rates has a major impact on the Australian economy and the world. However, in rural Australia, the provision of broadband services to an internet dispersed population over a large geographical area with low population densities remains both an economic and technical challenge [1]. Furthermore, the implementation of currently available technologies such as fibre-to-the-premise (FTTP), 3G, 4G and WiMAX seems to be impractical, considering the low population density that is distributed in a large area. Therefore, new paradigms and innovative telecommunication technologies need to be explored to overcome the challenges of providing faster and more reliable broadband internet services to internet dispersed rural areas. The research project implements an innovative Multi-User- Single-Antenna for MIMO (MUSA-MIMO) technology using the spectrum currently allocated to analogue TV. MUSAMIMO technology can be considered as a special case of MIMO technology, which is beneficial when provisioning reliable and high-speed communication channels. Particularly, the abstract describes the development of a novel MUSA-MIMO channel model that takes into account temporal variations in the rural wireless environment. This can be considered as a novel approach tailor-made to rural Australia for provisioning efficient wireless broadband communications.
Resumo:
This paper discusses how internet services can be brought one step closer to the rural dispersed communities by improving wireless broadband communications in those areas. To accomplish this objective we describe the use of an innovative Multi-User-Single-Antenna for MIMO (MUSA-MIMO) technology using the spectrum currently allocated to analogue TV. MUSA-MIMO technology can be considered as a special case of MIMO technology, which is beneficial when provisioning reliable and high-speed communication channels. This paper describes channel modelling techniques to characterise the MUSA-MIMO system allowing an effective deployment of this technology. Particularly, it describes the development of a novel MUSA MIMO channel model that takes into account temporal variations in the rural wireless environment. This can be considered as a novel approach tailor-maid to rural Australia for provisioning efficient wireless broadband communications.