711 resultados para transit time
Resumo:
This paper investigates quality of service (QoS) and resource productivity implications of transit route passenger loading and travel time. It highlights the value of occupancy load factor as a direct passenger comfort QoS measure. Automatic Fare Collection data for a premium radial bus route in Brisbane, Australia, is used to investigate time series correlation between occupancy load factor and passenger average travel time. Correlation is strong across the entire span of service in both directions. Passengers tend to be making longer, peak direction commuter trips under significantly less comfortable conditions than off-peak. The Transit Capacity and Quality of Service Manual uses segment based load factor as a measure of onboard loading comfort QoS. This paper provides additional insight into QoS by relating the two route based dimensions of occupancy load factor and passenger average travel time together in a two dimensional format, both from the passenger’s and operator’s perspectives. Future research will apply Value of Time to QoS measurement, reflecting perceived passenger comfort through crowding and average time spent onboard. This would also assist in transit service quality econometric modeling. The methodology can be readily applied in a practical setting where AFC data for fixed scheduled routes is available. The study outcomes also provide valuable research and development directions.
Resumo:
Measures of transit accessibility are important in evaluating transit services, planning for future services and investment on land use development. Existing tools measure transit accessibility using averaged walking distance or walking time to public transit. Although the mode captivity may have significant implications on one’s willingness to walk to use public transit, this has not been addressed in the literature to date. Failed to distinguish transit captive users may lead to overestimated ridership and spatial coverage of transit services. The aim of this research is to integrate the concept of transit captivity into the analysis of walking access to public transit. The conventional way of defining “captive” and “choice” transit users showed no significant difference in their walking times according to a preliminary analysis. A cluster analysis technique is used to further divide “choice” users by three main factors, namely age group, labour force status and personal income. After eliminating “true captive” users, defined as those without driver’s licence or without a car in respective household, “non-true captive” users were classified into a total of eight groups having similar socio-economic characteristics. The analysis revealed significant differences in the walking times and patterns by their level of captivity to public transit. This paper challenges the rule-of-thumb of 400m walking distance to bus stops. In average, people’s willingness to walk dropped drastically at 268m and continued to drop constantly until it reached the mark of 670m, where there was another drastic drop of 17%, which left with only 10% of the total bus riders willing to walk 670m or more. This research found that mothers working part time were the ones with lowest transit captivity and thus most sensitive to the walking time, followed by high-income earners and the elderly. The level of captivity increases when public transit users earned lesser income, such as students and students working part time.
Resumo:
Public transport is one of the key promoters of sustainable urban transport. To encourage and increase public transport patronage it is important to investigate the route choice behaviours of urban public transit users. This chapter reviews the main developments of modelling urban public transit users’ route choice behaviours in a historical perspective, from the 1960s to the present time. The approaches re- viewed for this study include the early heuristic studies on finding the least-cost transit route and all-or- nothing transit assignment, the bus common lines problem, the disaggregate discrete choice models, the deterministic and stochastic user equilibrium transit assignment models, and the recent dynamic transit assignment models. This chapter also provides an outlook for the future directions of modelling transit users’ route choice behaviours. Through the comparison with the development of models for motorists’ route choice and traffic assignment problems, this chapter advocates that transit route choice research should draw inspiration from the research outcomes from the road area, and that the modelling practice of transit users’ route choice should further explore the behavioural complexities.
Resumo:
With daily commercial and social activity in cities, regulation of train service in mass rapid transit railways is necessary to maintain service and passenger flow. Dwell-time adjustment at stations is one commonly used approach to regulation of train service, but its control space is very limited. Coasting control is a viable means of meeting the specific run-time in an inter-station run. The current practice is to start coasting at a fixed distance from the departed station. Hence, it is only optimal with respect to a nominal operational condition of the train schedule, but not the current service demand. The advantage of coasting can only be fully secured when coasting points are determined in real-time. However, identifying the necessary starting point(s) for coasting under the constraints of current service conditions is no simple task as train movement is governed by a large number of factors. The feasibility and performance of classical and heuristic searching measures in locating coasting point(s) is studied with the aid of a single train simulator, according to specified inter-station run times.
Resumo:
This paper reviews the main studies on transit users’ route choice in thecontext of transit assignment. The studies are categorized into three groups: static transit assignment, within-day dynamic transit assignment, and emerging approaches. The motivations and behavioural assumptions of these approaches are re-examined. The first group includes shortest-path heuristics in all-or-nothing assignment, random utility maximization route-choice models in stochastic assignment, and user equilibrium based assignment. The second group covers within-day dynamics in transit users’ route choice, transit network formulations, and dynamic transit assignment. The third group introduces the emerging studies on behavioural complexities, day-to-day dynamics, and real-time dynamics in transit users’ route choice. Future research directions are also discussed.
Resumo:
Transit oriented developments are high density mixed use developments located within short and easily walkable distance of a major transit centre. These developments are often hypothesised as a means of enticing a mode shift from the private car to sustainable transport modes such as, walking, cycling and public transport. However, it is important to gather evidence to test this hypothesis by determining the travel characteristics of transit oriented developments users. For this purpose, travel surveys were conducted for an urban transit oriented development currently under development. This chapter presents the findings from the preliminary data analysis of the travel surveys. Kelvin Grove Urban Village, a mixed use development located in Brisbane, Australia, has been selected as the case for the transit oriented developments study. Travel data for all groups of transit oriented development users ranging from students to shoppers, and residents to employees were collected. Different survey instruments were used for different transit oriented development users to optimise their response rates, and the performance of these survey instruments are stated herein. The travel characteristics of transit oriented development users are reported in this chapter by explaining mode share, trip length distribution, and time of day of trip. The results of the travel survey reveal that Kelvin Grove Urban Village users use more sustainable modes of transport as compared to other Brisbane residents.
Resumo:
Dhaka doesn’t have a mature transport system. Lacking in institutional arrangements, policy and planning, and law enforcement, the transport system operates has developed ad hoc and is situationally problematic. Absence of proper coordination between modes, poor public transport system, inadequate pedestrian facilities, and environmental degradation justify full consideration of Bus Rapid Transit (BRT) in Dhaka. BRT centres on sustainable transport principles. BRT is a system, which is capable to mitigate Dhaka’s transport problem if properly planned. In Strategic transport plan of Dhaka three BRT transport corridor has been proposed and BRT pre-feasibility study came up with one pilot corridor for early implementation of BRT. This paper first reviews international best practices then explores various BRT system packages and evaluates the suitability of these BRT packages by analyzing current bus service condition and physical and geometric configuration along the BRT pilot corridor. It concludes by proposing some BRT scenarios, which can be considered for further evaluation with respect to speed, delay, travel time and environmental pollution.
Resumo:
The common approach to estimate bus dwell time at a BRT station is to apply the traditional dwell time methodology derived for suburban bus stops. In spite of being sensitive to boarding and alighting passenger numbers and to some extent towards fare collection media, these traditional dwell time models do not account for the platform crowding. Moreover, they fall short in accounting for the effects of passenger/s walking along a relatively longer BRT platform. Using the experience from Brisbane busway (BRT) stations, a new variable, Bus Lost Time (LT), is introduced in traditional dwell time model. The bus lost time variable captures the impact of passenger walking and platform crowding on bus dwell time. These are two characteristics which differentiate a BRT station from a bus stop. This paper reports the development of a methodology to estimate bus lost time experienced by buses at a BRT platform. Results were compared with the Transit Capacity and Quality of Servce Manual (TCQSM) approach of dwell time and station capacity estimation. When the bus lost time was used in dwell time calculations it was found that the BRT station platform capacity reduced by 10.1%.
Resumo:
The common approach to estimate bus dwell time at a BRT station platform is to apply the traditional dwell time methodology derived for suburban bus stops. Current dwell time models are sensitive towards bus type, fare collection policy along with the number of boarding and alighting passengers. However, they fall short in accounting for the effects of passenger/s walking on a relatively longer BRT station platform. Analysis presented in this paper shows that the average walking time of a passenger at BRT platform is 10 times more than that of bus stop. The requirement of walking to the bus entry door at the BRT station platform may lead to the bus experiencing a higher dwell time. This paper presents a theory for a BRT network which explains the loss of station capacity during peak period operation. It also highlights shortcomings of present available bus dwell time models suggested for the analysis of BRT operation.
Resumo:
This paper reports an empirical study on measuring transit service reliability using the data from a Web-based passenger survey on a major transit corridor in Brisbane, Australia. After an introduction of transit service reliability measures, the paper presents the results from the case study including study area, data collection, and reliability measures obtained. This includes data exploration of boarding/arrival lateness, in-vehicle time variation, waiting time variation, and headway adherence. Impacts of peak-period effects and separate operation on service reliability are examined. Relationships between transit service characteristics and passenger waiting time are also discussed. A summary of key findings and an agenda of future research are offered in conclusions.
Resumo:
Sustainable transport has become a necessity instead of an option, to address the problems of congestion and urban sprawl, whose effects include increased trip lengths and travel time. A more sustainable form of development, known as Transit Oriented Development (TOD) is presumed to offer sustainable travel choices with reduced need to travel to access daily destinations, by providing a mixture of land uses together with good quality of public transport service, infrastructure for walking and cycling. However, performance assessment of these developments with respect to travel characteristics of their inhabitants is required. This research proposes a five step methodology for evaluating the transport impacts of TODs. The steps for TOD evaluation include pre–TOD assessment, traffic and travel data collection, determination of traffic impacts, determination of travel impacts, and drawing outcomes. Typically, TODs are comprised of various land uses; hence have various types of users. Assessment of characteristics of all user groups is essential for obtaining an accurate picture of transport impacts. A case study TOD, Kelvin Grove Urban Village (KGUV), located 2km of north west of the Brisbane central business district in Australia was selected for implementing the proposed methodology and to evaluate the transport impacts of a TOD from an Australian perspective. The outcomes of this analysis indicated that KGUV generated 27 to 48 percent less traffic compared to standard published rates specified for homogeneous uses. Further, all user groups of KGUV used more sustainable modes of transport compared to regional and similarly located suburban users, with higher trip length for shopping and education trips. Although the results from this case study development support the transport claims of reduced traffic generation and sustainable travel choices by way of TODs, further investigation is required, considering different styles, scales and locations of TODs. The proposed methodology may be further refined by using results from new TODs and a framework for TOD evaluation may be developed.
Resumo:
Deterministic transit capacity analysis applies to planning, design and operational management of urban transit systems. The Transit Capacity and Quality of Service Manual (1) and Vuchic (2, 3) enable transit performance to be quantified and assessed using transit capacity and productive capacity. This paper further defines important productive performance measures of an individual transit service and transit line. Transit work (p-km) captures the transit task performed over distance. Passenger transmission (p-km/h) captures the passenger task delivered by service at speed. Transit productiveness (p-km/h) captures transit work performed over time. These measures are useful to operators in understanding their services’ or systems’ capabilities and passenger quality of service. This paper accounts for variability in utilized demand by passengers along a line and high passenger load conditions where passenger pass-up delay occurs. A hypothetical case study of an individual bus service’s operation demonstrates the usefulness of passenger transmission in comparing existing and growth scenarios. A hypothetical case study of a bus line’s operation during a peak hour window demonstrates the theory’s usefulness in examining the contribution of individual services to line productive performance. Scenarios may be assessed using this theory to benchmark or compare lines and segments, conditions, or consider improvements.
Resumo:
Deterministic transit capacity analysis applies to planning, design and operational management of urban transit systems. The Transit Capacity and Quality of Service Manual (1) and Vuchic (2, 3) enable transit performance to be quantified and assessed using transit capacity and productive capacity. This paper further defines important productive performance measures of an individual transit service and transit line. Transit work (p-km) captures the transit task performed over distance. Passenger transmission (p-km/h) captures the passenger task delivered by service at speed. Transit productiveness (p-km/h) captures transit work performed over time. These measures are useful to operators in understanding their services’ or systems’ capabilities and passenger quality of service. This paper accounts for variability in utilized demand by passengers along a line and high passenger load conditions where passenger pass-up delay occurs. A hypothetical case study of an individual bus service’s operation demonstrates the usefulness of passenger transmission in comparing existing and growth scenarios. A hypothetical case study of a bus line’s operation during a peak hour window demonstrates the theory’s usefulness in examining the contribution of individual services to line productive performance. Scenarios may be assessed using this theory to benchmark or compare lines and segments, conditions, or consider improvements.
Resumo:
Performance of urban transit systems may be quantified and assessed using transit capacity and productive capacity in planning, design and operational management activities. Bunker (4) defines important productive performance measures of an individual transit service and transit line, which are extended in this paper to quantify efficiency and operating fashion of transit services and lines. Comparison of a hypothetical bus line’s operation during a morning peak hour and daytime hour demonstrates the usefulness of productiveness efficiency and passenger transmission efficiency, passenger churn and average proportion line length traveled to the operator in understanding their services’ and lines’ productive performance, operating characteristics, and quality of service. Productiveness efficiency can flag potential pass-up activity under high load conditions, as well as ineffective resource deployment. Proportion line length traveled can directly measure operating fashion. These measures can be used to compare between lines/routes and, within a given line, various operating scenarios and time horizons to target improvements. The next research stage is investigating within-line variation using smart card passenger data and field observation of pass-ups. Insights will be used to further develop practical guidance to operators.
Resumo:
Performance of urban transit systems may be quantified and assessed using transit capacity and productive capacity in planning, design and operational management activities. Bunker (4) defines important productive performance measures of an individual transit service and transit line, which are extended in this paper to quantify efficiency and operating fashion of transit services and lines. Comparison of a hypothetical bus line’s operation during a morning peak hour and daytime hour demonstrates the usefulness of productiveness efficiency and passenger transmission efficiency, passenger churn and average proportion line length traveled to the operator in understanding their services’ and lines’ productive performance, operating characteristics, and quality of service. Productiveness efficiency can flag potential pass-up activity under high load conditions, as well as ineffective resource deployment. Proportion line length traveled can directly measure operating fashion. These measures can be used to compare between lines/routes and, within a given line, various operating scenarios and time horizons to target improvements. The next research stage is investigating within-line variation using smart card passenger data and field observation of pass-ups. Insights will be used to further develop practical guidance to operators.