84 resultados para spermatozoon motility
Resumo:
Exclusion processes on a regular lattice are used to model many biological and physical systems at a discrete level. The average properties of an exclusion process may be described by a continuum model given by a partial differential equation. We combine a general class of contact interactions with an exclusion process. We determine that many different types of contact interactions at the agent-level always give rise to a nonlinear diffusion equation, with a vast variety of diffusion functions D(C). We find that these functions may be dependent on the chosen lattice and the defined neighborhood of the contact interactions. Mild to moderate contact interaction strength generally results in good agreement between discrete and continuum models, while strong interactions often show discrepancies between the two, particularly when D(C) takes on negative values. We present a measure to predict the goodness of fit between the discrete and continuous model, and thus the validity of the continuum description of a motile, contact-interacting population of agents. This work has implications for modeling cell motility and interpreting cell motility assays, giving the ability to incorporate biologically realistic cell-cell interactions and develop global measures of discrete microscopic data.
Resumo:
On the microscale, migration, proliferation and death are crucial in the development, homeostasis and repair of an organism; on the macroscale, such effects are important in the sustainability of a population in its environment. Dependent on the relative rates of migration, proliferation and death, spatial heterogeneity may arise within an initially uniform field; this leads to the formation of spatial correlations and can have a negative impact upon population growth. Usually, such effects are neglected in modeling studies and simple phenomenological descriptions, such as the logistic model, are used to model population growth. In this work we outline some methods for analyzing exclusion processes which include agent proliferation, death and motility in two and three spatial dimensions with spatially homogeneous initial conditions. The mean-field description for these types of processes is of logistic form; we show that, under certain parameter conditions, such systems may display large deviations from the mean field, and suggest computationally tractable methods to correct the logistic-type description.
Resumo:
In plant cells, myosin is believed to be the molecular motor responsible for actin-based motility processes such as cytoplasmic streaming and directed vesicle transport. In an effort to characterize plant myosin, a cDNA encoding a myosin heavy chain was isolated from Arabidopsis thaliana. The predicted product of the MYA1 gene is 173 kDa and is structurally similar to the class V myosins. It is composed of the highly-conserved NH2-terminal "head" domain, a putative calmodulin-binding "neck" domain an alpha-helical coiled-coil domain, and a COOH-terminal domain. Northern blot analysis shows that the Arabidopsis MYA1 gene is expressed in all the major plant tissues (flower, leaf, root, and stem). We suggest that the MYA1 myosin may be involved in a general intracellular transport process in plant cells.
Resumo:
Myosin is believed to act as the molecular motor for many actin-based motility processes in eukaryotes. It is becoming apparent that a single species may possess multiple myosin isoforms, and at least seven distinct classes of myosin have been identified from studies of animals, fungi, and protozoans. The complexity of the myosin heavy-chain gene family in higher plants was investigated by isolating and characterizing myosin genomic and cDNA clones from Arabidopsis thaliana. Six myosin-like genes were identified from three polymerase chain reaction (PCR) products (PCR1, PCR11, PCR43) and three cDNA clones (ATM2, MYA2, MYA3). Sequence comparisons of the deduced head domains suggest that these myosins are members of two major classes. Analysis of the overall structure of the ATM2 and MYA2 myosins shows that they are similar to the previously-identified ATM1 and MYA1 myosins, respectively. The MYA3 appears to possess a novel tail domain, with five IQ repeats, a six-member imperfect repeat, and a segment of unique sequence. Northern blot analyses indicate that some of the Arabidopsis myosin genes are preferentially expressed in different plant organs. Combined with previous studies, these results show that the Arabidopsis genome contains at least eight myosin-like genes representing two distinct classes.
Resumo:
Continuum diffusion models are often used to represent the collective motion of cell populations. Most previous studies have simply used linear diffusion to represent collective cell spreading, while others found that degenerate nonlinear diffusion provides a better match to experimental cell density profiles. In the cell modeling literature there is no guidance available with regard to which approach is more appropriate for representing the spreading of cell populations. Furthermore, there is no knowledge of particular experimental measurements that can be made to distinguish between situations where these two models are appropriate. Here we provide a link between individual-based and continuum models using a multi-scale approach in which we analyze the collective motion of a population of interacting agents in a generalized lattice-based exclusion process. For round agents that occupy a single lattice site, we find that the relevant continuum description of the system is a linear diffusion equation, whereas for elongated rod-shaped agents that occupy L adjacent lattice sites we find that the relevant continuum description is connected to the porous media equation (pme). The exponent in the nonlinear diffusivity function is related to the aspect ratio of the agents. Our work provides a physical connection between modeling collective cell spreading and the use of either the linear diffusion equation or the pme to represent cell density profiles. Results suggest that when using continuum models to represent cell population spreading, we should take care to account for variations in the cell aspect ratio because different aspect ratios lead to different continuum models.
Resumo:
This manuscript took a 'top down' approach to understanding survival of inhabitant cells in the ecosystem bone, working from higher to lower length and time scales through the hierarchical ecosystem of bone. Our working hypothesis is that nature “engineered” the skeleton using a 'bottom up' approach,where mechanical properties of cells emerge from their adaptation to their local me-chanical milieu. Cell aggregation and formation of higher order anisotropic struc- ture results in emergent architectures through cell differentiation and extracellular matrix secretion. These emergent properties, including mechanical properties and architecture, result in mechanical adaptation at length scales and longer time scales which are most relevant for the survival of the vertebrate organism [Knothe Tate and von Recum 2009]. We are currently using insights from this approach to har-ness nature’s regeneration potential and to engineer novel mechanoactive materials [Knothe Tate et al. 2007, Knothe Tate et al. 2009]. In addition to potential applications of these exciting insights, these studies may provide important clues to evolution and development of vertebrate animals. For instance, one might ask why mesenchymal stem cells condense at all? There is a putative advantage to self-assembly and cooperation, but this advantage is somewhat outweighed by the need for infrastructural complexity (e.g., circulatory systems comprised of specific differentiated cell types which in turn form conduits and pumps to overcome limitations of mass transport via diffusion, for example; dif-fusion is untenable for multicellular organisms larger than 250 microns in diameter. A better question might be: Why do cells build skeletal tissue? Once cooperatingcells in tissues begin to deplete local sources of food in their aquatic environment, those that have evolved a means to locomote likely have an evolutionary advantage. Once the environment becomes less aquarian and more terrestrial, self-assembled organisms with the ability to move on land might have conferred evolutionary ad-vantages as well. So did the cytoskeleton evolve several length scales, enabling the emergence of skeletal architecture for vertebrate animals? Did the evolutionary advantage of motility over noncompliant terrestrial substrates (walking on land) favor adaptations including emergence of intracellular architecture (changes in the cytoskeleton and upregulation of structural protein manufacture), inter-cellular con- densation, mineralization of tissues, and emergence of higher order architectures?How far does evolutionary Darwinism extend and how can we exploit this knowl- edge to engineer smart materials and architectures on Earth and new, exploratory environments?[Knothe Tate et al. 2008]. We are limited only by our ability to imagine. Ultimately, we aim to understand nature, mimic nature, guide nature and/or exploit nature’s engineering paradigms without engineer-ing ourselves out of existence.
Resumo:
A number of reports have demonstrated the importance of the CUB domaincontaining protein 1 (CDCP1) in facilitating cancer progression in animal models and the potential of this protein as a prognostic marker in several malignancies. CDCP1 facilitates metastasis formation in animal models by negatively regulating anoikis, a type of apoptosis triggered by the loss of attachment signalling from cell-cell contacts or cell-extra cellular matrix (ECM) contacts. Due to the important role CDCP1 plays in cancer progression in model systems, it is considered a potential drug target to prevent the metastatic spread of cancers. CDCP1 is a highly glycosylated 836 amino acid cell surface protein. It has structural features potentially facilitating protein-protein interactions including 14 N-glycosylation sites, three CUB-like domains, 20 cysteine residues likely to be involved in disulfide bond formation and five intracellular tyrosine residues. CDCP1 interacts with a variety of proteins including Src family kinases (SFKs) and protein kinase C ä (PKCä). Efforts to understand the mechanisms regulating these interactions have largely focussed on three CDCP1 tyrosine residues Y734, Y743 and Y762. CDCP1-Y734 is the site where SFKs phosphorylate and bind to CDCP1 and mediate subsequent phosphorylation of CDCP1-Y743 and -Y762 which leads to binding of PKCä at CDCP1-Y762. The resulting trimeric protein complex of SFK•CDCP1•PKCä has been proposed to mediate an anti-apoptotic cell phenotype in vitro, and to promote metastasis in vivo. The effect of mutation of the three tyrosines on interactions of CDCP1 with SFKs and PKCä and the consequences on cell phenotype in vitro and in vivo have not been examined. CDCP1 has a predicted molecular weight of ~90 kDa but is usually detected as a protein which migrates at ~135 kDa by Western blot analysis due to its high degree of glycosylation. A low molecular weight form of CDCP1 (LMWCDCP1) of ~70 kDa has been found in a variety of cancer cell lines. The mechanisms leading to the generation of LMW-CDCP1 in vivo are not well understood but an involvement of proteases in this process has been proposed. Serine proteases including plasmin and trypsin are able to proteolytically process CDCP1. In addition, the recombinant protease domain of the serine protease matriptase is also able to cleave the recombinant extracellular portion of CDCP1. Whether matriptase is able to proteolytically process CDCP1 on the cell surface has not been examined. Importantly, proteolytic processing of CDCP1 by trypsin leads to phosphorylation of its cell surface-retained portion which suggests that this event leads to initiation of an intracellular signalling cascade. This project aimed to further examine the biology of CDCP1 with a main of focus on exploring the roles played by CDCP1 tyrosine residues. To achieve this HeLa cells stably expressing CDCP1 or the CDCP1 tyrosine mutants Y734F, Y743F and Y762F were generated. These cell lines were used to examine: • The roles of the tyrosine residues Y734, Y743 and Y762 in mediating interactions of CDCP1 with binding proteins and to examine the effect of the stable expression on HeLa cell morphology. • The ability of the serine protease matriptase to proteolytically process cell surface CDCP1 and to examine the consequences of this event on HeLa cell phenotype and cell signalling in vitro. • The importance of these residues in processes associated with cancer progression in vitro including adhesion, proliferation and migration. • The role of these residues on metastatic phenotype in vivo and the ability of a function-blocking anti-CDCP1 antibody to inhibit metastasis in the chicken embryo chorioallantoic membrane (CAM) assay. Interestingly, biochemical experiments carried out in this study revealed that mutation of certain CDCP1 tyrosine residues impacts on interactions of this protein with binding proteins. For example, binding of SFKs as well as PKCä to CDCP1 was markedly decreased in HeLa-CDCP1-Y734F cells, and binding of PKCä was also reduced in HeLa-CDCP1-Y762F cells. In contrast, HeLa-CDCP1-Y743F cells did not display altered interactions with CDCP1 binding proteins. Importantly, observed differences in interactions of CDCP1 with binding partners impacted on basal phosphorylation of CDCP1. It was found that HeLa-CDCP1, HeLa-CDCP1-Y743F and -Y762F displayed strong basal levels of CDCP1 phosphorylation. In contrast, HeLa-CDCP1-Y734F cells did not display CDCP1 phosphorylation but exhibited constitutive phosphorylation of focal adhesion kinase (FAK) at tyrosine 861. Significantly, subsequent investigations to examine this observation suggested that CDCP1-Y734 and FAK-Y861 are competitive substrates for SFK-mediated phosphorylation. It appeared that SFK-mediated phosphorylation of CDCP1- Y734 and FAK-Y861 is an equilibrium which shifts depending on the level of CDCP1 expression in HeLa cells. This suggests that the level of CDCP1 expression may act as a regulatory mechanism allowing cells to switch from a FAK-Y861 mediated pathway to a CDCP1-Y734 mediated pathway. This is the first time that a link between SFKs, CDCP1 and FAK has been demonstrated. One of the most interesting observations from this work was that CDCP1 altered HeLa cell morphology causing an elongated and fibroblastic-like appearance. Importantly, this morphological change depended on CDCP1- Y734. In addition, it was observed that this change in cell morphology was accompanied by increased phosphorylation of SFK-Y416. This suggests that interactions of SFKs with CDCP1-Y734 increases SFK activity since SFKY416 is critical in regulating kinase activity of these proteins. The essential role of SFKs in mediating CDCP1-induced HeLa cell morphological changes was demonstrated using the SFK-selective inhibitor SU6656. This inhibitor caused reversion of HeLa-CDCP1 cell morphology to an epithelial appearance characteristic of HeLa-vector cells. Significantly, in vitro studies revealed that certain CDCP1-mediated cell phenotypes are mediated by cellular pathways dependent on CDCP1 tyrosine residues whereas others are independent of these sites. For example, CDCP1 expression caused a marked increase in HeLa cell motility that was independent of CDCP1 tyrosine residues. In contrast, CDCP1- induced decrease in HeLa cell proliferation was most prominent in HeLa- CDCP1-Y762F cells, potentially indicating a role for this site in regulating proliferation in HeLa cells. Another cellular event which was identified to require phosphorylation of a particular CDCP1 tyrosine residue is adhesion to fibronectin. It was observed that the CDCP1-mediated strong decrease in adhesion to fibronectin is mostly restored in HeLa-CDCP1-Y743F cells. This suggests a possible role for CDCP1-Y743 in causing a CDCP1-mediated decrease in adhesion. Data from in vivo experiments indicated that HeLa-CDCP1-Y734F cells are more metastic than HeLa-CDCP1 cells in vivo. This indicates that interaction of CDCP1 with SFKs and PKCä may not be required for CDCP1-mediated metastasis formation of HeLa cells in vivo. The metastatic phenotype of these cells may be caused by signalling involving FAK since HeLa-CDCP1- Y734F cells are the only CDCP1 expressing cells displaying constitutive phosphorylation of FAK-Y861. HeLa-CDCP1-Y762F cells displayed a very low metastatic ability which suggests that this CDCP1 tyrosine residue is important in mediating a pro-metastatic phenotype in HeLa cells. More detailed exploration of cellular events occurring downstream of CDCP1-Y734 and -Y762 may provide important insights into the mechanisms altering the metastatic ability of CDCP1 expressing HeLa cells. Complementing the in vivo studies, anti-CDCP1 antibodies were employed to assess whether these antibodies are able to inhibit metastasis of CDCP1 and CDCP1 tyrosine mutants expressing HeLa cells. It was found that HeLa- CDCP1-Y734F cells were the only cell line which was markedly reduced in the ability to metastasise. In contrast, the ability of HeLa-CDCP1, HeLa- CDCP1-Y743F and -Y762F cells to metastasise in vivo was not inhibited. These data suggest a possible role of interactions of CDCP1 with SFKs, occurring at CDCP1-Y734, in preventing an anti-metastatic effect of anti- CDCP1 antibodies in vivo. The proposal that SFKs may play a role in regulating anti-metastatic effects of anti-CDCP1 antibodies was supported by another experiment where differences between HeLa-CDCP1 cells and CDCP1 expressing HeLa cells (HeLa-CDCP1-S) from collaborators at the Scripps Research Institute were examined. It was found that HeLa-CDCP1-S cells express different SFKs than CDCP1 expressing HeLa cells generated for this study. This is important since HeLa-CDCP1-S cells can be inhibited in their metastatic ability using anti-CDCP1 antibodies in vivo. Importantly, these data suggest that further examinations of the roles of SFKs in facilitating anti-metastatic effects of anti-CDCP1 antibodies may give insights into how CDCP1 can be blocked to prevent metastasis in vivo. This project also explored the ability of the serine protease matriptase to proteolytically process cell surface localised CDCP1 because it is unknown whether matriptase can cleave cell surface CDCP1 as it has been reported for other proteases such as trypsin and plasmin. Furthermore, the consequences of matriptase-mediated proteolysis on cell phenotype in vitro and cell signalling were examined since recent reports suggested that proteolysis of CDCP1 leads to its phosphorylation and may initiate cell signalling and consequently alter cell phenotype. It was found that matriptase is able to proteolytically process cell surface CDCP1 at low nanomolar concentrations which suggests that cleavage of CDCP1 by matriptase may facilitate the generation of LWM-CDCP1 in vivo. To examine whether matriptase-mediated proteolysis induced cell signalling anti-phospho Erk 1/2 Western blot analysis was performed as this pathway has previously been examined to study signalling in response to proteolytic processing of cell surface proteins. It was found that matriptase-mediated proteolysis in CDCP1 expressing HeLa cells initiated intracellular signalling via Erk 1/2. Interestingly, this increase in phosphorylation of Erk 1/2 was also observed in HeLa-vector cells. This suggested that initiation of cell signalling via Erk 1/2 phosphorylation as a result of matriptase-mediated proteolysis occurs by pathways independent of CDCP1. Subsequent investigations measuring the flux of free calcium ions and by using a protease-activated receptor 2 (PAR2) agonist peptide confirmed this hypothesis. These data suggested that matriptase-mediated proteolysis results in cell signalling via a pathway induced by the activation of PAR2 rather than by CDCP1. This indicates that induction of cell signalling in HeLa cells as a consequence of matriptase-mediated proteolysis occurs via signalling pathways which do not involve phosphorylation of Erk 1/2. Consequently, it appears that future attempts should focus on the examination of cellular pathways other than Erk 1/2 to elucidate cell signalling initiated by matriptase-mediated proteolytic processing of CDCP1. The data presented in this thesis has explored in vitro and in vivo aspects of the biology of CDCP1. The observations summarised above will permit the design of future studies to more precisely determine the role of CDCP1 and its binding partners in processes relevant to cancer progression. This may contribute to further defining CDCP1 as a target for cancer treatment.
Resumo:
Objective: This study investigated: (i) the prevalence of ureaplasmas in semen and washed semen and (ii) the effect of ureaplasmas on semen andrology parameters. Design: Prospective study. Setting: IVF unit -private hospital, Brisbane, Australia. Patient(s): Three hundred and forty three men participating in an assisted reproductive technology (ART) treatment cycle. Intervention(s): Semen and washed semen tested by culture, PCR assays and indirect immunofluorescent antibody assays. Statistical differences were determined by a t-test, Wilcoxon or Pearson’s Chi- square test where appropriate. Main Outcome Measure(s): The prevalence of ureaplasmas in semen and washed semen and the effect of these microorganisms on semen andrology parameters. Result(s): Ureaplasmas were detected in 73/343 (22%) semen samples and 29/343 (8.5%) washed semen samples. Ureaplasmas adherent to the surface of spermatozoa were demonstrated by indirect immunofluorescent antibody testing. U. parvum serovar 6 (36.6%) and U. urealyticum (30%) were the most prevalent isolates in washed semen. A comparison of the semen andrology parameters of washed semen ureaplasma positive and negative groups demonstrated a lower proportion of non-motile sperm in the washed semen ureaplasma positive group. Conclusion(s): Ureaplasmas are not always removed from semen by a standard ART washing procedure and can remain adherent to the surface of spermatozoa.
Resumo:
In the exclusion-process literature, mean-field models are often derived by assuming that the occupancy status of lattice sites is independent. Although this assumption is questionable, it is the foundation of many mean-field models. In this work we develop methods to relax the independence assumption for a range of discrete exclusion process-based mechanisms motivated by applications from cell biology. Previous investigations that focussed on relaxing the independence assumption have been limited to studying initially-uniform populations and ignored any spatial variations. By ignoring spatial variations these previous studies were greatly simplified due to translational invariance of the lattice. These previous corrected mean-field models could not be applied to many important problems in cell biology such as invasion waves of cells that are characterised by moving fronts. Here we propose generalised methods that relax the independence assumption for spatially inhomogeneous problems, leading to corrected mean-field descriptions of a range of exclusion process-based models that incorporate (i) unbiased motility, (ii) biased motility, and (iii) unbiased motility with agent birth and death processes. The corrected mean-field models derived here are applicable to spatially variable processes including invasion wave type problems. We show that there can be large deviations between simulation data and traditional mean-field models based on invoking the independence assumption. Furthermore, we show that the corrected mean-field models give an improved match to the simulation data in all cases considered.
Resumo:
We present a spatiotemporal mathematical model of chlamydial infection, host immune response and spatial movement of infectious particles. The re- sulting partial differential equations model both the dynamics of the infection and changes in infection profile observed spatially along the length of the host genital tract. This model advances previous chlamydia modelling by incorporating spatial change, which we also demonstrate to be essential when the timescale for movement of infectious particles is equal to, or shorter than, the developmental cycle timescale. Numerical solutions and model analysis are carried out, and we present a hypothesis regarding the potential for treatment and prevention of infection by increasing chlamydial particle motility.
Resumo:
Ghrelin is a peptide hormone that was originally isolated from the stomach as the endogenous ligand for the growth hormone secretagogue receptor (GHSR). Ghrelin has many functions, including the regulation of appetite and gut motility, growth hormone release from the anterior pituitary and roles in the cardiovascular and immune systems. Ghrelin and its receptor are expressed in a number of cancers and cancer cell lines and may play a role in processes associated with cancer progression, including cell proliferation, apoptosis, and cell invasion and migration.
Resumo:
Continuum, partial differential equation models are often used to describe the collective motion of cell populations, with various types of motility represented by the choice of diffusion coefficient, and cell proliferation captured by the source terms. Previously, the choice of diffusion coefficient has been largely arbitrary, with the decision to choose a particular linear or nonlinear form generally based on calibration arguments rather than making any physical connection with the underlying individual-level properties of the cell motility mechanism. In this work we provide a new link between individual-level models, which account for important cell properties such as varying cell shape and volume exclusion, and population-level partial differential equation models. We work in an exclusion process framework, considering aligned, elongated cells that may occupy more than one lattice site, in order to represent populations of agents with different sizes. Three different idealizations of the individual-level mechanism are proposed, and these are connected to three different partial differential equations, each with a different diffusion coefficient; one linear, one nonlinear and degenerate and one nonlinear and nondegenerate. We test the ability of these three models to predict the population level response of a cell spreading problem for both proliferative and nonproliferative cases. We also explore the potential of our models to predict long time travelling wave invasion rates and extend our results to two dimensional spreading and invasion. Our results show that each model can accurately predict density data for nonproliferative systems, but that only one does so for proliferative systems. Hence great care must be taken to predict density data for with varying cell shape.
Resumo:
Assisted Reproductive Technologies (ART) offer a wide range of techniques that have the potential to augment efforts to conserve and manage endangered amphibians and improve wild and captive population numbers. Gametes and tissues of species nearing endangered or extinct status can be cryopreserved and stored in gene banks, to provide material that can be utilised in the future as ART methods are refined. The Spotted Grass Frog, Limnodynastes tasmaniensis, is an abundant amphibian species in South-Eastern Australia of the family Myobatrachidae, that is suitable for the development of ART systems that can be applied to the threatened and endangered myobatrachid and other amphibian species native to Australia. The aim of this study was to advance the understanding of ovulation, fertilisation and embryo nic development of Lim. tasmaniensis and in vitro manipulations of reproduction and development for use in the development of advanced ART procedures such as intracytoplasmic spermatozoon injection (ICSI), androgenesis and nuclear transfer. Ovulation in amphibians can be induced by protocols utilising natural or synthetic hormones. All protocols tested on Lim. tasmaniensis in this study required two injections and the most effective protocols continued to require a first injection of pituitary extracts to induce ovulation. The second injection was, however, successfully replaced by synthetic chorionic gonadotrophin at a threshold dosage of 100 iu and halved the number of cane toads required to source the pituitaries. A combination of LHRH and Pimozide offered a less effective protocol, that did not require the use of pituitary extracts, and avoided the risk of pathogen transfer associated with unsterilised pituitary extracts. Unfertilised eggs of Lim. tasmaniensis were exposed to media of various osmolalities to determine media effects on eggs and their surrounding jelly layers that might impact on egg viability and fertilisability. Osmolality had no effect upon the egg diameter, however, rapid swelling of the jelly layers occurred within 15 minutes of exposure to various media treatments and plateaued from 30-90 minutes without further expansion. Swelling of the jelly layers was increased in hypotonic media (2.5% SAR, H2O) and minimised in the isotonic media (100% SAR). The optimal conditions for the culture of Lim. tasmaniensis eggs were identified as a holding media of 100% SAR, followed by a medium change to 2.5% SAR at insemination. This sequence of media minimised the rate of swelling of the jelly layers prior to contact with the spermatozoa, and maximised the activation of spermatozoa and eggs throughout fertilisation and embryonic development. Embryos of Lim. tasmaniensis were cultured at four temperatures (13 C, 17 C, 23 C and 29 C), to determine the effect of temperature on cleavage and embryonic development rates. Embryonic development progressed through a sequence of stages that were not altered by changes in temperature. However cleavage rates were affected by changes in temperature as compared with normal embryonic growth at 23 C. Embryonic development was suspended at the lowest temperature (13 C) while embryonic viability was maintained. A moderate decrease in temperature (17 C) slowed cleavage, while the highest temperature (29 C) increased the cleavage rate, but decreased the embryo survival. Rates of embryonic development can be manipulated by changes in temperature and this method can be used to source blastomeres of a specific size/stage at a predetermined age or halt cleavage at specific stages for embryos or embryo derived cells to be included in ART procedures. This study produced the first report of the application of Intracytoplasmic Spermatozoon Injection (ICSI) in an Australian amphibian. Eggs that were activated by microinjection with a single spermatozoon (n=50) formed more deep, but abnormal, cleavage furrows post-injection (18/50, 36%), than surface changes (12/50, 24%). This result is in contrast to eggs injected without a spermatozoon (n=42), where the majority of eggs displayed limited surface changes (36/42, 86%), and few deep, abnormal furrows (3/42, 7%). Three advanced embryos (3/50, 6%) were produced by ICSI that developed to various stages within the culture system. Technical difficulties were encountered that prevented the generation of any metamorphs from ICSI tadpoles. Nevertheless, when these blocks to ICSI are overcome, the ICSI procedure will be both directly useful as an ART procedure in its own right, and the associated refinement of micromanipulation procedures will assist in the development of other ART procedures in Lim. tasmaniensis. A greater understanding of basic reproductive and developmental biology in Lim. tasmaniensis would greatly facilitate refinement of fertilisation by ICSI. Assisted Reproductive Technologies, in conjunction with gene banks may in the future regenerate extinct amphibian species, and assist in the recovery of declining amphibian populations nationally and worldwide.