316 resultados para sensor network


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX) and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Underwater wireless sensor networks (UWSNs) have become the seat of researchers' attention recently due to their proficiency to explore underwater areas and design different applications for marine discovery and oceanic surveillance. One of the main objectives of each deployed underwater network is discovering the optimized path over sensor nodes to transmit the monitored data to onshore station. The process of transmitting data consumes energy of each node, while energy is limited in UWSNs. So energy efficiency is a challenge in underwater wireless sensor network. Dual sinks vector based forwarding (DS-VBF) takes both residual energy and location information into consideration as priority factors to discover an optimized routing path to save energy in underwater networks. The modified routing protocol employs dual sinks on the water surface which improves network lifetime. According to deployment of dual sinks, packet delivery ratio and the average end to end delay are enhanced. Based on our simulation results in comparison with VBF, average end to end delay reduced more than 80%, remaining energy increased 10%, and the increment of packet reception ratio was about 70%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sensor networks for environmental monitoring present enormous benefits to the community and society as a whole. Currently there is a need for low cost, compact, solar powered sensors suitable for deployment in rural areas. The purpose of this research is to develop both a ground based wireless sensor network and data collection using unmanned aerial vehicles. The ground based sensor system is capable of measuring environmental data such as temperature or air quality using cost effective low power sensors. The sensor will be configured such that its data is stored on an ATMega16 microcontroller which will have the capability of communicating with a UAV flying overhead using UAV communication protocols. The data is then either sent to the ground in real time or stored on the UAV using a microcontroller until it lands or is close enough to enable the transmission of data to the ground station.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report summarises the development of an Unmanned Aerial System and an integrated Wireless Sensor Network (WSN), suitable for the real world application in remote sensing tasks. Several aspects are discussed and analysed to provide improvements in flight duration, performance and mobility of the UAV, while ensuring the accuracy and range of data from the wireless sensor system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Process Control Systems (PCSs) or Supervisory Control and Data Acquisition (SCADA) systems have recently been added to the already wide collection of wireless sensor networks applications. The PCS/SCADA environment is somewhat more amenable to the use of heavy cryptographic mechanisms such as public key cryptography than other sensor application environments. The sensor nodes in the environment, however, are still open to devastating attacks such as node capture, which makes designing a secure key management challenging. In this paper, a key management scheme is proposed to defeat node capture attack by offering both forward and backward secrecies. Our scheme overcomes the pitfalls which Nilsson et al.'s scheme suffers from, and is not more expensive than their scheme.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Alzaid et al. proposed a forward & backward secure key management scheme in wireless sensor networks for Process Control Systems (PCSs) or Supervisory Control and Data Acquisition (SCADA) systems. The scheme, however, is still vulnerable to an attack called the sandwich attack that can be launched when the adversary captures two sensor nodes at times t1 and t2, and then reveals all the group keys used between times t1 and t2. In this paper, a fix to the scheme is proposed in order to limit the vulnerable time duration to an arbitrarily chosen time span while keeping the forward and backward secrecy of the scheme untouched. Then, the performance analysis for our proposal, Alzaid et al.’s scheme, and Nilsson et al.’s scheme is given.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We consider multi-robot systems that include sensor nodes and aerial or ground robots networked together. Such networks are suitable for tasks such as large-scale environmental monitoring or for command and control in emergency situations. We present a sensor network deployment method using autonomous aerial vehicles and describe in detail the algorithms used for deployment and for measuring network connectivity and provide experimental data collected from field trials. A particular focus is on determining gaps in connectivity of the deployed network and generating a plan for repair, to complete the connectivity. This project is the result of a collaboration between three robotics labs (CSIRO, USC, and Dartmouth). © Springer-Verlag Berlin/Heidelberg 2006.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper we describe the recent development of a low-bandwidth wireless camera sensor network. We propose a simple, yet effective, network architecture which allows multiple cameras to be connected to the network and synchronize their communication schedules. Image compression of greater than 90% is performed at each node running on a local DSP coprocessor, resulting in nodes using 1/8th the energy compared to streaming uncompressed images. We briefly introduce the Fleck wireless node and the DSP/camera sensor, and then outline the network architecture and compression algorithm. The system is able to stream color QVGA images over the network to a base station at up to 2 frames per second. © 2007 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

FOS, the Fleck Operating System, is a new operating system that implements cooperative threads—providing a simple and productive environment for applications programmers. This paper discusses sensor network operating systems in general and places this development in context.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Java programming language has potentially significant advantages for wireless sensor nodes but there is currently no feature-rich, open source virtual machine available. In this paper we present Darjeeling, a system comprising offline tools and a memory efficient run-time. The offline post-compiler tool analyzes, links and consolidates Java class files into loadable modules. The runtime implements a modified Java VM that supports multithreading and is designed specifically to operate in constrained execution environments such as wireless sensor network nodes and supports inheritance, threads, garbage collection, and loadable modules. We have demonstrated Java running on AVR128 and MSP430 microcontrollers at speeds of up to 70,000 JVM instructions per second.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Emerging data streaming applications in Wireless Sensor Networks require reliable and energy-efficient Transport Protocols. Our recent Wireless Sensor Network deployment in the Burdekin delta, Australia, for water monitoring [T. Le Dinh, W. Hu, P. Sikka, P. Corke, L. Overs, S. Brosnan, Design and deployment of a remote robust sensor network: experiences from an outdoor water quality monitoring network, in: Second IEEE Workshop on Practical Issues in Building Sensor Network Applications (SenseApp 2007), Dublin, Ireland, 2007] is one such example. This application involves streaming sensed data such as pressure, water flow rate, and salinity periodically from many scattered sensors to the sink node which in turn relays them via an IP network to a remote site for archiving, processing, and presentation. While latency is not a primary concern in this class of application (the sampling rate is usually in terms of minutes or hours), energy-efficiency is. Continuous long-term operation and reliable delivery of the sensed data to the sink are also desirable. This paper proposes ERTP, an Energy-efficient and Reliable Transport Protocol for Wireless Sensor Networks. ERTP is designed for data streaming applications, in which sensor readings are transmitted from one or more sensor sources to a base station (or sink). ERTP uses a statistical reliability metric which ensures the number of data packets delivered to the sink exceeds the defined threshold. Our extensive discrete event simulations and experimental evaluations show that ERTP is significantly more energyefficient than current approaches and can reduce energy consumption by more than 45% when compared to current approaches. Consequently, sensor nodes are more energy-efficient and the lifespan of the unattended WSN is increased.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the past few years, numerous data collection protocols have been developed for wireless sensor networks (WSNs). However, there has been no comparison of their relative performance in realistic environments. Here we report the results of an empirical study using a Fleck3 sensor network testbed for four different data collection protocols: One phase pull Directed Diffusion (DD), Expected Number of Transmissions (ETX), ETX with explicit acknowledgment (ETX-eAck), and ETX with implicit acknowledgment (ETX-iAck). Our empirical study provides useful insights for future sensor network deployments. When the required application end-to-end reliability is not strict (e.g., 70%) and link quality is good, DD and ETX are the best options because of their simplicity and low routing overhead. Both ETX-eAck and ETX-iAck achieve more than 90% end-to-end reliability when the link quality is reasonable (less than 25% packet loss). When the link quality is good, ETX-iAck introduces significantly less routing overhead (up to 50%) than ETX-eAck. However, if the radio transceiver supports variable packet length, ETX-eAck can outperform ETX-iAck when the link quality is poor. The important message from this paper is that choice of data collection protocol should come after the operating environment is understood. This understanding must include the characteristics of the radio transceiver, and link loss statistics from a long-term (across seasons and weather variation) radio survey of the site.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A large-scale, outdoor, pervasive computing system based on the Fleck hardware platform applies sensor network technology to farming. Comprising static and animal-borne mobile nodes, the system measures the state of a complex, dynamic system comprising climate, soil, pasture, and animals. This data supports prediction of the land's future state and improved management outcomes through closed-loop control. This article is part of a special issue, Building a Sensor-Rich World.