92 resultados para rheological analyses
Resumo:
Background: Many studies have illustrated that ambient air pollution negatively impacts on health. However, little evidence is available for the effects of air pollution on cardiovascular mortality (CVM) in Tianjin, China. Also, no study has examined which strata length for the time-stratified case–crossover analysis gives estimates that most closely match the estimates from time series analysis. Objectives: The purpose of this study was to estimate the effects of air pollutants on CVM in Tianjin, China, and compare time-stratified case–crossover and time series analyses. Method: A time-stratified case–crossover and generalized additive model (time series) were applied to examine the impact of air pollution on CVM from 2005 to 2007. Four time-stratified case–crossover analyses were used by varying the stratum length (Calendar month, 28, 21 or 14 days). Jackknifing was used to compare the methods. Residual analysis was used to check whether the models fitted well. Results: Both case–crossover and time series analyses show that air pollutants (PM10, SO2 and NO2) were positively associated with CVM. The estimates from the time-stratified case–crossover varied greatly with changing strata length. The estimates from the time series analyses varied slightly with changing degrees of freedom per year for time. The residuals from the time series analyses had less autocorrelation than those from the case–crossover analyses indicating a better fit. Conclusion: Air pollution was associated with an increased risk of CVM in Tianjin, China. Time series analyses performed better than the time-stratified case–crossover analyses in terms of residual checking.
Resumo:
Business processes have emerged as a well-respected variable in the design of successful corporations. However, unlike other key managerial variables, such as products and services, customers and employees, physical or digital assets, the conceptualization and management of business processes are in many respects in their infancy. In this book, Jan Recker investigates the notion of quality of business process modeling grammars. His evaluation is based on an ontological-, qualitative-, and quantitative analysis, applied to BPMN, a widely-used business process modeling grammar. His results reveal the ontological shortcomings of BPMN and how these manifest themselves in actual process modeling practice, as well as how they influence the usage behavior of modeling practitioners. More generally, his book constitutes a landmark for empirical technology assessment, analyzing the way in which design flaws in technology influence usage behavior.
Resumo:
Magneto-rheological (MR) fluid damper is a semi-active control device that has recently received more attention by the vibration control community. But inherent nonlinear hysteresis character of magneto-rheological fluid dampers is one of the challenging aspects for utilizing this device to achieve high system performance. So the development of accurate model is necessary to take the advantage their unique characteristics. Research by others [3] has shown that a system of nonlinear differential equations can successfully be used to describe the hysteresis behavior of the MR damper. The focus of this paper is to develop an alternative method for modeling a damper in the form of centre average fuzzy interference system, where back propagation learning rules are used to adjust the weight of network. The inputs for the model are used from the experimental data. The resulting fuzzy interference system is satisfactorily represents the behavior of the MR fluid damper with reduced computational requirements. Use of the neuro-fuzzy model increases the feasibility of real time simulation.
Resumo:
Bone loss may result from remodelling initiated by implant stress protection. Quantifying remodelling requires bone density distributions which can be obtained from computed tomography scans. Pre-operative scans of large animals however are rarely possible. This study aimed to determine if the contra-lateral bone is a suitable control for the purpose of quantifying bone remodelling. CT scans of 8 pairs of ovine tibia were used to determine the likeness of left and right bones. The deviation between the outer surfaces of the bone pairs was used to quantify geometric similarity. The density differences were determined by dividing the bones into discrete volumes along the shaft of the tibia. Density differences were also determined for fractured and contra-lateral bone pairs to determine the magnitude of implant related remodelling. Left and right ovine tibiae were found to have a high degree of similarity with differences of less than 1.0 mm in the outer surface deviation and density difference of less than 5% in over 90% of the shaft region. The density differences (10–40%) as a result of implant related bone remodelling were greater than left-right differences. Therefore, for the purpose of quantifying bone remodelling in sheep, the contra-lateral tibia may be considered an alternative to a pre-operative control.
Resumo:
This paper discusses the statistical analyses used to derive bridge live loads models for Hong Kong from a 10-year weigh-in-motion (WIM) data. The statistical concepts required and the terminologies adopted in the development of bridge live load models are introduced. This paper includes studies for representative vehicles from the large amount of WIM data in Hong Kong. Different load affecting parameters such as gross vehicle weights, axle weights, axle spacings, average daily number of trucks etc are first analyzed by various stochastic processes in order to obtain the mathematical distributions of these parameters. As a prerequisite to determine accurate bridge design loadings in Hong Kong, this study not only takes advantages of code formulation methods used internationally but also presents a new method for modelling collected WIM data using a statistical approach.
Resumo:
Several studies have demonstrated an association between polycystic ovary syndrome (PCOS) and the dinucleotide repeat microsatellite marker D19S884, which is located in intron 55 of the fibrillin-3 (FBN3) gene. Fibrillins, including FBN1 and 2, interact with latent transforming growth factor (TGF)-β-binding proteins (LTBP) and thereby control the bioactivity of TGFβs. TGFβs stimulate fibroblast replication and collagen production. The PCOS ovarian phenotype includes increased stromal collagen and expansion of the ovarian cortex, features feasibly influenced by abnormal fibrillin expression. To examine a possible role of fibrillins in PCOS, particularly FBN3, we undertook tagging and functional single nucleotide polymorphism (SNP) analysis (32 SNPs including 10 that generate non-synonymous amino acid changes) using DNA from 173 PCOS patients and 194 controls. No SNP showed a significant association with PCOS and alleles of most SNPs showed almost identical population frequencies between PCOS and control subjects. No significant differences were observed for microsatellite D19S884. In human PCO stroma/cortex (n = 4) and non-PCO ovarian stroma (n = 9), follicles (n = 3) and corpora lutea (n = 3) and in human ovarian cancer cell lines (KGN, SKOV-3, OVCAR-3, OVCAR-5), FBN1 mRNA levels were approximately 100 times greater than FBN2 and 200–1000-fold greater than FBN3. Expression of LTBP-1 mRNA was 3-fold greater than LTBP-2. We conclude that FBN3 appears to have little involvement in PCOS but cannot rule out that other markers in the region of chromosome 19p13.2 are associated with PCOS or that FBN3 expression occurs in other organs and that this may be influencing the PCOS phenotype.
Resumo:
A magneto-rheological (MR) fluid damper is a semi-active control device that has recently begun to receive more attention in the vibration control community. However, the inherent nonlinear nature of the MR fluid damper makes it challenging to use this device to achieve high damping control system performance. Therefore the development of an accurate modeling method for a MR fluid damper is necessary to take advantage of its unique characteristics. Our goal was to develop an alternative method for modeling a MR fluid damper by using a self tuning fuzzy (STF) method based on neural technique. The behavior of the researched damper is directly estimated through a fuzzy mapping system. In order to improve the accuracy of the STF model, a back propagation and a gradient descent method are used to train online the fuzzy parameters to minimize the model error function. A series of simulations had been done to validate the effectiveness of the suggested modeling method when compared with the data measured from experiments on a test rig with a researched MR fluid damper. Finally, modeling results show that the proposed STF interference system trained online by using neural technique could describe well the behavior of the MR fluid damper without need of calculation time for generating the model parameters.
Resumo:
The mechanical vibration properties of single actin filaments from 50 to 288 nm are investigated by the molecular dynamics simulation in this study. The natural frequencies obtained from the molecular simulations agree with those obtained from the analytical solution of the equivalent Euler–Bernoulli beam model. Through the convergence study of the mechanical properties with respect to the filament length, it was found that the Euler–Bernoulli beam model can only be reliably used when the single actin filament is of the order of hundreds of nanometre scale. This molecular investigation not only provides the evidence for the use of the continuum beam model in characterising the mechanical properties of single actin filaments, but also clarifies the criteria for the effective use of the Euler–Bernoulli beam model.
Resumo:
Cold-formed steel members are increasingly used as primary structural elements in buildings due to the availability of thin and high strength steels and advanced cold-forming technologies. Cold-formed lipped channel beams (LCB) are commonly used as flexural members such as floor joists and bearers. Shear behaviour of LCBs with web openings is more complicated and their shear capacities are considerably reduced by the presence of web openings. However, limited research has been undertaken on the shear behaviour and strength of LCBs with web openings. Hence a numerical study was undertaken to investigate the shear behaviour and strength of LCBs with web openings. Finite element models of simply supported LCBs with aspect ratios of 1.0 and 1.5 were considered under a mid-span load. They were then validated by comparing their results with test results and used in a detailed parametric study. Experimental and numerical results showed that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LCBs with web openings. Improved design equations were therefore proposed for the shear strength of LCBs with web openings. This paper presents the details of this numerical study of LCBs with web openings, and the results.