269 resultados para powders-chemical preparation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone defects, especially large bone defects, remain a major challenge in orthopaedic surgery. Autologous bone transplantation is considered the most effective treatment, but insufficient donor tissue, coupled with concerns about donor site morbidity, has hindered this approach in large-scale applications. Alternative approaches include implanting biomaterials such as bioactive glass (BG), which has been widely used for bone defect healing, due to having generally good biocompatibility, and can be gradually biodegraded during the process of new bone formation. Mesoporous bioactive glass (MBG) is a newly developed bioactive glass which has been proven to have enhanced in-vitro bioactivity; however the in-vivo osteogenesis has not been studied. A critical problem in using the bone tissue engineering approach to restore large bone defects is that the nutrient supply and cell viability at the centre of the scaffold is severely hampered since the diffusion distance of nutrients and oxygen for cell survival is limited to 150-200µm. Cobalt ions has been shown to mimic hypoxia, which plays a pivotal role in coupling angiogenesis with osteogenesis in-vivo by activating hypoxia inducing factor-1α (HIF-1α) transcription factor, subsequently initiating the expression of genes associated with tissue regeneration. Therefore, one aim of this study is to investigate the in-vivo osteogenesis of MBG by comparison with BG and β-TCP, which are widely used clinically. The other aim is to explore hypoxia-mimicking biomaterials by incorporating Cobalt into MBG and β-TCP. MBG and β-TCP incorporated with 5% cobalt (5Co-MBG and 5CCP) have also been studied in-vivo to determine whether the hypoxic effect has a beneficial effect on the bone formation. The composition and microstructure of synthesised materials (BG, MBG, 5Co-MBG, 5CCP) were characterised, along with the mesopore properties of the MBG materials. Dissolution and cytotoxicity of the Co-containing materials were also investigated. Femoral samples with defects harvested at 4 and 8 weeks were scanned using micro-CT followed by processing for histology (H&E staining) to determine bone formation. Histology of MBG showed a slower rate of bone formation at 4 weeks than BG, however at 8 weeks it could be clearly seen that MBG had more bone formation. The in-vivo results show that the osteogenesis of MBG reciprocates the enhanced performance shown in-vitro compared to BG. Dissolution study showed that Co ions can be efficiently released from MBG and β-TCP in a controllable way. Low amounts of Co incorporated into the MBG and β-TCP showed no significant cytotoxicity and the Co-MBG powders maintained a mesopore structure although not as highly ordered as pure MBG. Preliminary study has shown that Co incorporated samples showed little to no bone formation, instead incurring high lymphocyte activity. Further studies need to be done on Co incorporated materials to determine the cause for high lymphocyte activity in-vivo, which appear to hinder bone formation. In conclusion, this study demonstrated the osteogenic activity of MBG and provided some valuable information of tissue reaction to Co-incorporated MBG and TCP materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Divalent cobalt ions (Co2+) have been shown to possess the capacity to induce angiogenesis by activating hypoxia inducible factor-1α (HIF-1α) and subsequently inducing the production of vascular endothelial growth factor (VEGF). However, there are few reports about Co-containing biomaterials for inducing in vitro angiogenesis. The aim of the present work was to prepare Co-containing β-tricalcium phosphate (Co-TCP) ceramics with different contents of calcium substituted by cobalt (0, 2, 5 mol%) and to investigate the effect of Co substitution on their physicochemical and biological properties. Co-TCP powders were synthesized by a chemistry precipitation method and Co-TCP ceramics were prepared by sintering the powder compacts. The effect of Co substitution on phase transition and the sintering property of the β-TCP ceramics was investigated. The proliferation and VEGF expression of human bone marrow mesenchymal stem cells (HBMSCs) cultured with both powder extracts and ceramic discs of Co-TCP was further evaluated. The in vitro angiogenesis was evaluated by the tube-like structure formation of human umbilical vein endothelial cells (HUVECs) cultured on ECMatrix™ in the presence of powder extracts. The results showed that Co substitution suppressed the phase transition from β- to α-TCP. Both the powder extracts and ceramic discs of Co-TCP had generally good cytocompatibility to support HBMSC growth. Importantly, the incorporation of Co into β-TCP greatly stimulated VEGF expression of HBMSCs and Co-TCP showed a significant enhancement of network structure formation of HUVECs compared with pure TCP. Our results suggested that the incorporation of Co into bioceramics is a potential viable way to enhance angiogenic properties of biomaterials. Co-TCP bioceramics may be used for bone tissue regeneration with improved angiogenic capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study is to prepare Ca, P and Si-containing ternary oxide nagelschmidtite (NAGEL, Ca7Si2P2O16) bioceramics and explore their in vitro bioactivity for potential bone tissue regeneration. We prepared dense NAGEL ceramics through high-temperature sintering of NAGEL ceramic powders. The apatite-mineralization ability, dissolution rate, and human osteoblast response (including cytotoxicity analysis, attachment, morphology, proliferation, and bone-related gene expression) to NAGEL ceramics have been systematically studied by comparing with conventional β-tricalcium phosphate (β-TCP) ceramics. The results showed that NAGEL ceramics possessed more obvious apatite mineralization and dissolution (degradation) and stimulated bone-related gene expression (OCN and OPN) of osteoblasts than β-TCP ceramics. NAGEL ceramics also showed no significant cytotoxicity. NAGEL ceramics supported osteoblast attachment, proliferation, and osteogenic gene expression, with a comparable cell proliferation activity with β-TCP ceramics. These results indicate that novel NAGEL bioceramics with the specific composition of Ca7Si2P2O16, are a promising biomaterial for bone tissue regeneration application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoscale MgO powder was synthesized from magnesite ore by a wet chemical method. Acid dissolution was used to obtain a solution from which magnesium containing complexes were precipitated by either oxalic acid or ammonium hydroxide, The transformation of precipitates to the oxide was monitored by thermal analysis and XRD and the transformed powders were studied by electron microscopy. The MgO powders were added as dopants to Bi2SrCa2CuO8 powders and high temperature superconductor thick films were deposited on silver. Addition of suitable MgO powder resulted in increase of critical current density, J(c), from 8,900 Acm(-2) to 13,900 Acm(-2) measured at 77 K and 0 T. The effect of MgO addition was evaluated by XRD, electron microscopy and critical current density measurements. (C) 1998 Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the effect of catalyst preparation and additive precursors on the catalytic decomposition of biomass using palygorskite-supported Fe and Ni catalysts was investigated. The catalysts were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). It is concluded that the most active additive precursor was Fe(NO3)3·9H2O. As for the catalyst preparation method, co-precipitation had superiority over incipient wetness impregnation at low Fe loadings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interest in nanowires of metal oxide oxides has been exponentially growing in the last years, due to the attracting potential of application in electronic, optical and sensor field. We have focused our attention on the sensing properties of semiconducting nanowires as conductometric and optical gas sensors. Single crystal tin dioxide nanostructures were synthesized to explore and study their capability in form of multi-nanowires sensors. The nanowires of SnO2 have been used to produce a novel gas sensor based on Pt/oxide/SiC structure and operating as Schottky diode. For the first time, a reactive oxide layer in this device has been replaced by SnO2 nanowires. Proposed sensor has maintained the advantageous properties of known SiC- based MOS devices, that can be employed for the monitoring of gases (hydrogen and hydrocarbons) emitted by industrial combustion processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nano-tin oxide was deposited on the surface of wollastonite using the mixed solution including stannic chloride pentahydrate precursor and wollastonite by a hydrolysis precipitation process. The antistatic properties of the wollastonite materials under different calcined conditions and composite materials (nano-SnO2/wollastonite, SW) were measured by rubber sheeter and four-point probe (FPP) sheet resistance measurement. Effects of hydrolysis temperature and time, calcination temperature and time, pH value and nano-SnO2 coating amount on the resistivity of SW powders were studied, and the optimum experimental conditions were obtained. The microstructure and surface properties of wollastonite, precipitate and SW were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), specific surface area analyzer (BET), thermogravimetry (TG), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Fourier translation infrared spectroscopy (FTIR) respectively. The results showed that the nano-SnO2/wollastonite composite materials under optimum preparation conditions showed better antistatic properties, the resistivity of which was reduced from 1.068 × 104 Ω cm to 2.533 × 103 Ω cm. From TG and XRD analysis, the possible mechanism for coating of SnO2 nanoparticles on the surface of wollastonite was proposed. The infrared spectrum indicated that there were a large number of the hydroxyl groups on the surface of wollastonite. This is beneficial to the heterogeneous nucleation reaction. Through morphology, EDS and XPS analysis, the surface of wollastonite fiber was coated with a layer of 10–15 nm thickness of tin oxide grains the distribution of which was uniform.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A generic method for the synthesis of metal-7,7,8,8-tetracyanoquinodimethane (TCNQ) charge-transfer complexes on both conducting and nonconducting substrates is achieved by photoexcitation of TCNQ in acetonitrile in the presence of a sacrificial electron donor and the relevant metal cation. The photochemical reaction leads to reduction of TCNQ to the TCNQ- monoanion. In the presence of Mx+(MeCN), reaction with TCNQ-(MeCN) leads to deposition of Mx+[TCNQ]x crystals onto a solid substrate with morphologies that are dependent on the metal cation. Thus, CuTCNQ phase I photocrystallizes as uniform microrods, KTCNQ as microrods with a random size distribution, AgTCNQ as very long nanowires up to 30 μm in length and with diameters of less than 180 nm, and Co[TCNQ]2(H2O)2 as nanorods and wires. The described charge-transfer complexes have been characterized by optical and scanning electron microscopy and IR and Raman spectroscopy. The CuTCNQ and AgTCNQ complexes are of particular interest for use in memory storage and switching devices. In principle, this simple technique can be employed to generate all classes of metal−TCNQ complexes and opens up the possibility to pattern them in a controlled manner on any type of substrate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on the results of using unbleached sugar cane bagasse nanofibres (average diameter 26.5 nm; aspect ratio 247 assuming a dry fibre density of 1,500 kg/m3) to improve the physico-chemical properties of starch-based films. The addition of bagasse nanofibres (2.5 to 20 wt%) to modified potato starch (i.e. soluble starch) reduced the moisture uptake by up to 17 % at 58 % relative humidity. The film’s tensile strength and Young’s modulus increased by up to 100 % (3.1 to 6.2 MPa) and 300 % (66.3 to 198.3 MPa) respectively with 10 and 20 wt% fibre addition. However, the strain at yield dropped by 50 % for the film containing 10 wt% fibre. Models for composite materials were used to account for the strong interactions between the nanofibres and the starch matrix. The storage and loss moduli as well as the glass transition temperature (Tg) obtained from dynamic mechanical thermal analysis, were increased with the starch-nanofibre films indicating decreased starch chain mobility due to the interacting effect of the nanofibres. Evidence of the existence of strong interactions between the starch matrix and the nanofibres was revealed from detailed Fourier transform infra-red and scanning electron microscopic evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic surfactants modified clay minerals are usually used as adsorbents for hydrophobic organic contaminants remediation; this work however has shown organoclays can also work as adsorbents for hydrophilic anionic contaminant immobilization. Organoclays were prepared based on halloysite, kaolinite and bentonite and used for nitrate adsorption, which are significant for providing mechanism for the adsorption of anionic contaminants from waste water. XRD was used to characterize unmodified and surfactants modified clay minerals. Thermogravimetric analysis (TG) was used to determine the thermal stability and actual loading of surfactant molecules. Ion chromatography (IC) was used to determine changes of nitrate concentration before and after adsorption by these organoclays. These organoclays showed different removal capacities for anionic ions from water and adsorption mechanism was investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous efforts have been dedicated to the synthesis of large-volume methacrylate monoliths for large-scale biomolecules purification but most were obstructed by the enormous release of exotherms during preparation, thereby introducing structural heterogeneity in the monolith pore system. A significant radial temperature gradient develops along the monolith thickness, reaching a terminal temperature that supersedes the maximum temperature required for structurally homogenous monoliths preparation. The enormous heat build-up is perceived to encompass the heat associated with initiator decomposition and the heat released from free radical-monomer and monomer-monomer interactions. The heat resulting from the initiator decomposition was expelled along with some gaseous fumes before commencing polymerization in a gradual addition fashion. Characteristics of 80 mL monolith prepared using this technique was compared with that of a similar monolith synthesized in a bulk polymerization mode. An extra similarity in the radial temperature profiles was observed for the monolith synthesized via the heat expulsion technique. A maximum radial temperature gradient of only 4.3°C was recorded at the center and 2.1°C at the monolith peripheral for the combined heat expulsion and gradual addition technique. The comparable radial temperature distributions obtained birthed identical pore size distributions at different radial points along the monolith thickness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The preparation of macroporous methacrylate monolithic material with controlled pore structures can be carried out in an unstirred mould through careful and precise control of the polymerisation kinetics and parameters. Contemporary synthesis conditions of methacrylate monolithic polymers are based on existing polymerisation schemes without an in-depth understanding of the dynamics of pore structure and formation. This leads to poor performance in polymer usage thereby affecting final product recovery and purity, retention time, productivity and process economics. The unique porosity of methacrylate monolithic polymer which propels its usage in many industrial applications can be controlled easily during its preparation. Control of the kinetics of the overall process through changes in reaction time, temperature and overall composition such as cross-linker and initiator contents allow the fine tuning of the macroporous structure and provide an understanding of the mechanism of pore formation within the unstirred mould. The significant effect of temperature of the reaction kinetics serves as an effectual means to control and optimise the pore structure and allows the preparation of polymers with different pore size distributions from the same composition of the polymerisation mixture. Increasing the concentration of the cross-linking monomer affects the composition of the final monoliths and also decreases the average pore size as a result of pre-mature formation of highly cross-linked globules with a reduced propensity to coalesce. The choice and concentration of porogen solvent is also imperative. Different porogens and porogen mixtures present different pore structure output. Example, larger pores are obtained in a poor solvent due to early phase separation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synthesis of high quality boron carbide (B4C) powders is achieved by carbothermal reduction of boron oxide (B2O3) from a condensed boric acid (H3BO3)/polyvinyl acetate (PVAc) product. Precursor solutions are prepared via free radical polymerisation of vinyl acetate (VA) monomer in methanol in the presence of dissolved H3BO3. A condensed product is then formed by flash evaporation under vacuum. As excess VA monomer is removed at the evaporation step, the polymerisation time is used to manage availability of carbon for reaction. This control of carbon facilitates dispersion of H3BO3 in solution due to the presence of residual VA monomer. B4C powders with very low residual carbon are formed at temperatures as low as 1,250 °C with a 4 hour residence time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BaZr0.8Y0.2O3- (BZY)-NiO composite powders with different BZY-NiO weight ratios were prepared by a combustion method as anodes for proton-conducting solid oxide fuel cells (SOFCs). After heating to 1100C for 6 h, the composite powders were made of a well-dispersed mixture of two phases, BZY and NiO. Chemical stability tests showed that the BZY-NiO anodic powders had good stability against CO2, whereas comparative tests under the same conditions showed degradation for BaCe0.7Zr 0.1Y0.2O3--NiO, which is at present the most used anode material for proton-conducting SOFCs. Area specific resistance (ASR) measurements for BZY-NiO anodes showed that their electrochemical performance depended on the BZY-NiO weight ratio. The best performance was obtained for the anode containing 50 wt BZY and 50 wt NiO, which showed the smallest ASR values in the whole testing temperature range (0.37 cm2 at 600C). The 50 wt BZY and 50 wt NiO anode prepared by combustion also showed superior performance than that of the BZY-NiO anode conventionally made by a mechanical mixing route, as well as that of Pt.