93 resultados para parametric statistics
Resumo:
Now in its sixth edition, the Traffic Engineering Handbook continues to be a must have publication in the transportation industry, as it has been for the past 60 years. The new edition provides updated information for people entering the practice and for those already practicing. The handbook is a convenient desk reference, as well as an all in one source of principles and proven techniques in traffic engineering. Most chapters are presented in a new format, which divides the chapters into four areas-basics, current practice, emerging trends and information sources. Chapter topics include road users, vehicle characteristics, statistics, planning for operations, communications, safety, regulations, traffic calming, access management, geometrics, signs and markings, signals, parking, traffic demand, maintenance and studies. In addition, as the focus in transportation has shifted from project based to operations based, two new chapters have been added-"Planning for Operations" and "Managing Traffic Demand to Address Congestion: Providing Travelers with Choices." The Traffic Engineering Handbook continues to be one of the primary reference sources for study to become a certified Professional Traffic Operations Engineer™. Chapters are authored by notable and experienced authors, and reviewed and edited by a distinguished panel of traffic engineering experts.
Resumo:
Survival probability prediction using covariate-based hazard approach is a known statistical methodology in engineering asset health management. We have previously reported the semi-parametric Explicit Hazard Model (EHM) which incorporates three types of information: population characteristics; condition indicators; and operating environment indicators for hazard prediction. This model assumes the baseline hazard has the form of the Weibull distribution. To avoid this assumption, this paper presents the non-parametric EHM which is a distribution-free covariate-based hazard model. In this paper, an application of the non-parametric EHM is demonstrated via a case study. In this case study, survival probabilities of a set of resistance elements using the non-parametric EHM are compared with the Weibull proportional hazard model and traditional Weibull model. The results show that the non-parametric EHM can effectively predict asset life using the condition indicator, operating environment indicator, and failure history.
Resumo:
For many decades correlation and power spectrum have been primary tools for digital signal processing applications in the biomedical area. The information contained in the power spectrum is essentially that of the autocorrelation sequence; which is sufficient for complete statistical descriptions of Gaussian signals of known means. However, there are practical situations where one needs to look beyond autocorrelation of a signal to extract information regarding deviation from Gaussianity and the presence of phase relations. Higher order spectra, also known as polyspectra, are spectral representations of higher order statistics, i.e. moments and cumulants of third order and beyond. HOS (higher order statistics or higher order spectra) can detect deviations from linearity, stationarity or Gaussianity in the signal. Most of the biomedical signals are non-linear, non-stationary and non-Gaussian in nature and therefore it can be more advantageous to analyze them with HOS compared to the use of second order correlations and power spectra. In this paper we have discussed the application of HOS for different bio-signals. HOS methods of analysis are explained using a typical heart rate variability (HRV) signal and applications to other signals are reviewed.
Resumo:
Distributed Denial-of-Service (DDoS) attacks continue to be one of the most pernicious threats to the delivery of services over the Internet. Not only are DDoS attacks present in many guises, they are also continuously evolving as new vulnerabilities are exploited. Hence accurate detection of these attacks still remains a challenging problem and a necessity for ensuring high-end network security. An intrinsic challenge in addressing this problem is to effectively distinguish these Denial-of-Service attacks from similar looking Flash Events (FEs) created by legitimate clients. A considerable overlap between the general characteristics of FEs and DDoS attacks makes it difficult to precisely separate these two classes of Internet activity. In this paper we propose parameters which can be used to explicitly distinguish FEs from DDoS attacks and analyse two real-world publicly available datasets to validate our proposal. Our analysis shows that even though FEs appear very similar to DDoS attacks, there are several subtle dissimilarities which can be exploited to separate these two classes of events.
Resumo:
Statistics of the estimates of tricoherence are obtained analytically for nonlinear harmonic random processes with known true tricoherence. Expressions are presented for the bias, variance, and probability distributions of estimates of tricoherence as functions of the true tricoherence and the number of realizations averaged in the estimates. The expressions are applicable to arbitrary higher order coherence and arbitrary degree of interaction between modes. Theoretical results are compared with those obtained from numerical simulations of nonlinear harmonic random processes. Estimation of true values of tricoherence given observed values is also discussed
Resumo:
As the development of ICD-11 progresses, the Australian Bureau of Statistics is beginning to consider what will be required to successfully implement the new version of the classification. This paper will present early thoughts on the following: building understanding amongst the user community of upcoming changes and the implications of those changes; the need for training of coders and data users; development of analytical methods and conduct of comparability studies; processes to test, accept and implement new or updated coding software; assessment of coding quality; changes to data analyses and reporting processes; updates to regular publications; and assessing the resources required for successful implementation.
Resumo:
There is a growing need for parametric design software that communicates building performance feedback in early architectural exploration to support decision-making. This paper examines how the circuit of design and analysis process can be closed to provide active and concurrent feedback between architecture and services engineering domains. It presents the structure for an openly customisable design system that couples parametric modelling and energy analysis software to allow designers to assess the performance of early design iterations quickly. Finally, it discusses how user interactions with the system foster information exchanges that facilitate the sharing of design intelligence across disciplines.
Resumo:
In this paper we present a sequential Monte Carlo algorithm for Bayesian sequential experimental design applied to generalised non-linear models for discrete data. The approach is computationally convenient in that the information of newly observed data can be incorporated through a simple re-weighting step. We also consider a flexible parametric model for the stimulus-response relationship together with a newly developed hybrid design utility that can produce more robust estimates of the target stimulus in the presence of substantial model and parameter uncertainty. The algorithm is applied to hypothetical clinical trial or bioassay scenarios. In the discussion, potential generalisations of the algorithm are suggested to possibly extend its applicability to a wide variety of scenarios
Resumo:
Open pit mine operations are complex businesses that demand a constant assessment of risk. This is because the value of a mine project is typically influenced by many underlying economic and physical uncertainties, such as metal prices, metal grades, costs, schedules, quantities, and environmental issues, among others, which are not known with much certainty at the beginning of the project. Hence, mining projects present a considerable challenge to those involved in associated investment decisions, such as the owners of the mine and other stakeholders. In general terms, when an option exists to acquire a new or operating mining project, , the owners and stock holders of the mine project need to know the value of the mining project, which is the fundamental criterion for making final decisions about going ahead with the venture capital. However, obtaining the mine project’s value is not an easy task. The reason for this is that sophisticated valuation and mine optimisation techniques, which combine advanced theories in geostatistics, statistics, engineering, economics and finance, among others, need to be used by the mine analyst or mine planner in order to assess and quantify the existing uncertainty and, consequently, the risk involved in the project investment. Furthermore, current valuation and mine optimisation techniques do not complement each other. That is valuation techniques based on real options (RO) analysis assume an expected (constant) metal grade and ore tonnage during a specified period, while mine optimisation (MO) techniques assume expected (constant) metal prices and mining costs. These assumptions are not totally correct since both sources of uncertainty—that of the orebody (metal grade and reserves of mineral), and that about the future behaviour of metal prices and mining costs—are the ones that have great impact on the value of any mining project. Consequently, the key objective of this thesis is twofold. The first objective consists of analysing and understanding the main sources of uncertainty in an open pit mining project, such as the orebody (in situ metal grade), mining costs and metal price uncertainties, and their effect on the final project value. The second objective consists of breaking down the wall of isolation between economic valuation and mine optimisation techniques in order to generate a novel open pit mine evaluation framework called the ―Integrated Valuation / Optimisation Framework (IVOF)‖. One important characteristic of this new framework is that it incorporates the RO and MO valuation techniques into a single integrated process that quantifies and describes uncertainty and risk in a mine project evaluation process, giving a more realistic estimate of the project’s value. To achieve this, novel and advanced engineering and econometric methods are used to integrate financial and geological uncertainty into dynamic risk forecasting measures. The proposed mine valuation/optimisation technique is then applied to a real gold disseminated open pit mine deposit to estimate its value in the face of orebody, mining costs and metal price uncertainties.
Resumo:
With rapid and continuing growth of learning support initiatives in mathematics and statistics found in many parts of the world, and with the likelihood that this trend will continue, there is a need to ensure that robust and coherent measures are in place to evaluate the effectiveness of these initiatives. The nature of learning support brings challenges for measurement and analysis of its effects. After briefly reviewing the purpose, rationale for, and extent of current provision, this article provides a framework for those working in learning support to think about how their efforts can be evaluated. It provides references and specific examples of how workers in this field are collecting, analysing and reporting their findings. The framework is used to structure evaluation in terms of usage of facilities, resources and services provided, and also in terms of improvements in performance of the students and staff who engage with them. Very recent developments have started to address the effects of learning support on the development of deeper approaches to learning, the affective domain and the development of communities of practice of both learners and teachers. This article intends to be a stimulus to those who work in mathematics and statistics support to gather even richer, more valuable, forms of data. It provides a 'toolkit' for those interested in evaluation of learning support and closes by referring to an on-line resource being developed to archive the growing body of evidence. © 2011 Taylor & Francis.
Resumo:
Background: Although class attendance is linked to academic performance, questions remain about what determines students’ decisions to attend or miss class. Aims: In addition to the constructs of a common decision-making model, the theory of planned behaviour, the present study examined the influence of student role identity and university student (in-group) identification for predicting both the initiation and maintenance of students’ attendance at voluntary peer-assisted study sessions in a statistics subject. Sample: University students enrolled in a statistics subject were invited to complete a questionnaire at two time points across the academic semester. A total of 79 university students completed questionnaires at the first data collection point, with 46 students completing the questionnaire at the second data collection point. Method: Twice during the semester, students’ attitudes, subjective norm, perceived behavioural control, student role identity, in-group identification, and intention to attend study sessions were assessed via on-line questionnaires. Objective measures of class attendance records for each half-semester (or ‘term’) were obtained. Results: Across both terms, students’ attitudes predicted their attendance intentions, with intentions predicting class attendance. Earlier in the semester, in addition to perceived behavioural control, both student role identity and in-group identification predicted students’ attendance intentions, with only role identity influencing intentions later in the semester. Conclusions: These findings highlight the possible chronology that different identity influences have in determining students’ initial and maintained attendance at voluntary sessions designed to facilitate their learning.
Resumo:
This paper seeks to identify and quantify sources of the lagging productivity in Singapore’s retail sector as reported in the Economic Strategies Committee 2010 report. A two-stage analysis is adopted. In the first stage, the Malmquist productivity index is employed which provides measures of productivity change, technological change and efficiency change. In the second stage, technical efficiency estimates are regressed against explanatory variables based on a truncated regression model. Sources of technical efficiency were attributed to quality of workers while product assortment and competition negatively impacted on efficiency.
Resumo:
Forecasts generated by time series models traditionally place greater weight on more recent observations. This paper develops an alternative semi-parametric method for forecasting that does not rely on this convention and applies it to the problem of forecasting asset return volatility. In this approach, a forecast is a weighted average of historical volatility, with the greatest weight given to periods that exhibit similar market conditions to the time at which the forecast is being formed. Weighting is determined by comparing short-term trends in volatility across time (as a measure of market conditions) by means of a multivariate kernel scheme. It is found that the semi-parametric method produces forecasts that are significantly more accurate than a number of competing approaches at both short and long forecast horizons.