198 resultados para organic nutrients


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite recent developments in fixed-film combined biological nutrients removal (BNR) technology; fixed-film systems (i.e., biofilters), are still at the early stages of development and their application has been limited to a few laboratory-scale experiments. Achieving enhanced biological phosphorus removal in fixed-film systems requires exposing the micro-organisms and the waste stream to alternating anaerobic/aerobic or anaerobic/anoxic conditions in cycles. The concept of cycle duration (CD) as a process control parameter is unique to fixed-film BNR systems, has not been previously investigated, and can be used to optimise the performance of such systems. The CD refers to the elapsed time before the biomass is re-exposed to the same environmental conditions in cycles. Fixed-film systems offer many advantages over suspended growth systems such as reduced operating costs, simplicity of operation, absence of sludge recycling problems, and compactness. The control of nutrient discharges to water bodies, improves water quality, fish production, and allow water reuse. The main objective of this study was to develop a fundamental understanding of the effect of CD on the transformations of nutrients in fixed-film biofilter systems subjected to alternating aeration I no-aeration cycles A fixed-film biofilter system consisting of three up-flow biofilters connected in series was developed and tested. The first and third biofilters were operated in a cyclic mode in which the biomass was subjected to aeration/no-aeration cycles. The influent wastewater was simulated aquaculture whose composition was based on actual water quality parameters of aquacuture wastewater from a prawn grow-out facility. The influent contained 8.5 - 9:3 mg!L a111monia-N, 8.5- 8.7 mg/L phosphate-P, and 45- 50 mg!L acetate. Two independent studies were conducted at two biofiltration rates to evaluate and confirm the effect of CD on nutrient transformations in the biofilter system for application in aquaculture: A third study was conducted to enhance denitrification in the system using an external carbon- source at a rate varying from 0-24 ml/min. The CD was varied in the range of0.25- 120 hours for the first two studies and fixed at 12 hours for the third study. This study identified the CD as an important process control parameter that can be used to optimise the performance of full-scale fixed-film systems for BNR which represents a novel contribution in this field of research. The CD resulted in environmental conditions that inhibited or enhanced nutrient transformations. The effect of CD on BNR in fixed-film systems in terms of phosphorus biomass saturation and depletion has been established. Short CDs did not permit the establishment of anaerobic activity in the un-aerated biofilter and, thus, inhibited phosphorus release. Long CDs resulted in extended anaerobic activity and, thus, resulted in active phosphorus release. Long CDs, however, resulted in depleting the biomass phosphorus reservoir in the releasing biofilter and saturating the biomass phosphorus reservoir in the up-taking biofilter in the cycle. This phosphorus biomass saturation/depletion phenomenon imposes a practical limit on how short or long the CD can be. The length of the CD should be somewhere just before saturation or depletion occur and for the system tested, the optimal CD was 12 hours for the biofiltration rates tested. The system achieved limited net phosphorus removal due to the limited sludge wasting and lack of external carbon supply during phosphorus uptake. The phosphorus saturation and depletion reflected the need to extract phosphorus from the phosphorus-rich micro-organisms, for example, through back-washing. The major challenges of achieving phosphorus removal in the system included: (I) overcoming the deterioration in the performance of the system during the transition period following the start of each new cycle; and (2) wasting excess phosphorus-saturated biomass following the aeration cycle. Denitrification occurred in poorly aerated sections of the third biofilter and generally declined as the CD increased and as the time progressed in the individual cycle. Denitrification and phosphorus uptake were supplied by an internal organic carbon source, and the addition of an external carbon source (acetate) to the third biofilter resulted in improved denitrification efficiency in the system from 18.4 without supplemental carbon to 88.7% when the carbon dose reached 24 mL/min The removal of TOC and nitrification improved as the CD increased, as a result of the reduction in the frequency of transition periods between the cycles. A conceptual design of an effective fixed-film BNR biofilter system for the treatment of the influent simulated aquaculture wastewater was proposed based on the findings of the study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potential impacts of plantation forestry practices on soil organic carbon and Fe available to microorganisms were investigated in a subtropical coastal catchment. The impacts of harvesting or replanting were largely limited to the soil top layer (0–10 cm depth). The thirty-year-old Pinus plantation showed low soil moisture content (Wc) and relatively high levels of soil total organic carbon (TOC). Harvesting and replanting increased soil Wc but reduced TOC levels. Mean dissolved organic carbon (DOC) and microbial biomass carbon (MBC) increased in harvested or replanted soils, but such changes were not statistically significant (P > 0.05). Total dithionite-citrate and aqua regia-extractable Fe did not respond to forestry practices, but acid ammonium oxalate and pyrophosphate-extractable, bioavailable Fe decreased markedly after harvesting or replanting. Numbers of heterotrophic bacteria were significantly correlated with DOC levels (P < 0.05), whereas Fe-reducing bacteria and S-bacteria detected using laboratory cultivation techniques did not show strong correlation with either soil DOC or Fe content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global climate change may induce accelerated soil organic matter (SOM) decomposition through increased soil temperature, and thus impact the C balance in soils. We hypothesized that compartmentalization of substrates and decomposers in the soil matrix would decrease SOM sensitivity to temperature. We tested our hypothesis with three short-term laboratory incubations with differing physical protection treatments conducted at different temperatures. Overall, CO2 efflux increased with temperature, but responses among physical protection treatments were not consistently different. Similar respiration quotient (Q(10)) values across physical protection treatments did not support our original hypothesis that the largest Q(10) values would be observed in the treatment with the least physical protection. Compartmentalization of substrates and decomposers is known to reduce the decomposability of otherwise labile material, but the hypothesized attenuation of temperature sensitivity was not detected, and thus the sensitivity is probably driven by the thermodynamics of biochemical reactions as expressed by Arrhenius-type equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microorganisms play key roles in biogeochemical cycling by facilitating the release of nutrients from organic compounds. In doing so, microbial communities use different organic substrates that yield different amounts of energy for maintenance and growth of the community. Carbon utilization efficiency (CUE) is a measure of the efficiency with which substrate carbon is metabolized versus mineralized by the microbial biomass. In the face of global change, we wanted to know how temperature affected the efficiency by which the soil microbial community utilized an added labile substrate, and to determine the effect of labile soil carbon depletion (through increasing duration of incubation) on the community's ability to respond to an added substrate. Cellobiose was added to soil samples as a model compound at several times over the course of a long-term incubation experiment to measure the amount of carbon assimilated or lost as CO2 respiration. Results indicated that in all cases, the time required for the microbial community to take up the added substrate increased as incubation time prior to substrate addition increased. However, the CUE was not affected by incubation time. Increased temperature generally decreased CUE, thus the microbial community was more efficient at 15 degrees C than at 25 degrees C. These results indicate that at warmer temperatures microbial communities may release more CO2 per unit of assimilated carbon. Current climate-carbon models have a fixed CUE to predict how much CO2 will be released as soil organic matter is decomposed. Based on our findings, this assumption may be incorrect due to variation of CUE with changing temperature. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil C decomposition is sensitive to changes in temperature, and even small increases in temperature may prompt large releases of C from soils. But much of what we know about soil C responses to global change is based on short-term incubation data and model output that implicitly assumes soil C pools are composed of organic matter fractions with uniform temperature sensitivities. In contrast, kinetic theory based on chemical reactions suggests that older, more-resistant C fractions may be more temperature sensitive. Recent research on the subject is inconclusive, indicating that the temperature sensitivity of labile soil organic matter (OM) decomposition could either be greater than, less than, or equivalent to that of resistant soil OM. We incubated soils at constant temperature to deplete them of labile soil OM and then successively assessed the CO2-C efflux in response to warming. We found that the decomposition response to experimental warming early during soil incubation (when more labile C remained) was less than that later when labile C was depleted. These results suggest that the temperature sensitivity of resistant soil OM pools is greater than that for labile soil OM and that global change-driven soil C losses may be greater than previously estimated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between organic matter (OM) lability and temperature sensitivity is disputed, with recent observations suggesting that responses of relatively more resistant OM to increased temperature could be greater than, equivalent to, or less than responses of relatively more labile OM. This lack of clear understanding limits the ability to forecast carbon (C) cycle responses to temperature changes. Here, we derive a novel approach (denoted Q(10-q)) that accounts for changes in OM quality during decomposition and use it to analyze data from three independent sources. Results from new laboratory soil incubations (labile Q(10-q)=2.1 +/- 0.2; more resistant Q(10-q)=3.8 +/- 0.3) and reanalysis of data from other soil incubations reported in the literature (labile Q(10-q)=2.3; more resistant Q(10-q)=3.3) demonstrate that temperature sensitivity of soil OM decomposition increases with decreasing soil OM lability. Analysis of data from a cross-site, field litter bag decomposition study (labile Q(10-q)=3.3 +/- 0.2; resistant Q(10-q)=4.9 +/- 0.2) shows that litter OM follows the same pattern, with greater temperature sensitivity for more resistant litter OM. Furthermore, the initial response of cultivated soils, presumably containing less labile soil OM (Q(10-q)=2.4 +/- 0.3) was greater than that for undisturbed grassland soils (Q(10-q)=1.7 +/- 0.1). Soil C losses estimated using this approach will differ from previous estimates as a function of the magnitude of the temperature increase and the proportion of whole soil OM comprised of compounds sensitive to temperature over that temperature range. It is likely that increased temperature has already prompted release of significant amounts of C to the atmosphere as CO2. Our results indicate that future losses of litter and soil C may be even greater than previously supposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agricultural management affects soil organic matter, which is important for sustainable crop production and as a greenhouse gas sink. Our objective was to determine how tillage, residue management and N fertilization affect organic C in unprotected, and physically, chemically and biochemically protected soil C pools. Samples from Breton, Alberta were fractionated and analysed for organic C content. As in previous report, N fertilization had a positive effect, tillage had a minimal effect, and straw management had no effect on whole-soil organic C. Tillage and straw management did not alter organic C concentrations in the isolated C pools, while N fertilization increased C concentrations in all pools. Compared with a woodlot soil, the cultivated plots had lower total organic C, and the C was redistributed among isolated pools. The free light fraction and coarse particulate organic matter responded positively to C inputs, suggesting that much of the accumulated organic C occurred in an unprotected pool. The easily dispersed silt-sized fraction was the mineral-associated pool most responsive to changes in C inputs, whereas the microaggregate-derived silt-sized fraction best preserved C upon cultivation. These findings suggest that the silt-sized fraction is important for the long-term stabilization of organic matter through both physical occlusion in microaggregates and chemical protection by mineral association.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current paradigm in soil organic matter (SOM) dynamics is that the proportion of biologically resistant SOM will increase when total SOM decreases. Recently, several studies have focused on identifying functional pools of resistant SOM consistent with expected behaviours. Our objective was to combine physical and chemical approaches to isolate and quantify biologically resistant SOM by applying acid hydrolysis treatments to physically isolated silt- and clay-sized soil fractions. Microaggegrate-derived and easily dispersed silt- and clay-sized fractions were isolated from surface soil samples collected from six long-term agricultural experiment sites across North America. These fractions were hydrolysed to quantify the non-hydrolysable fraction, which was hypothesized to represent a functional pool of resistant SOM. Organic C and total N concentrations in the four isolated fractions decreased in the order: native > no-till > conventional-till at all sites. Concentrations of non-hydrolysable C (NHC) and N (NHN) were strongly correlated with initial concentrations, and C hydrolysability was found to be invariant with management treatment. Organic C was less hydrolysable than N, and overall, resistance to acid hydrolysis was greater in the silt-sized fractions compared with the clay-sized fractions. The acid hydrolysis results are inconsistent with the current behaviour of increasing recalcitrance with decreasing SOM content: while %NHN was greater in cultivated soils compared with their native analogues, %NHC did not increase with decreasing total organic C concentrations. The analyses revealed an interaction between biochemical and physical protection mechanisms that acts to preserve SOM in fine mineral fractions, but the inconsistency of the pool size with expected behaviour remains to be fully explained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The literature was reviewed and analyzed to determine the feasibility of using a combination of acid hydrolysis and CO2-C release during long-term incubation to determine soil organic carbon (SOC) pool sizes and mean residence times (MRTs). Analysis of 1100 data points showed the SOC remaining after hydrolysis with 6 M HCI ranged from 30 to 80% of the total SOC depending on soil type, depth, texture, and management. Nonhydrolyzable carbon (NHC) in conventional till soils represented 48% of SOC; no-till averaged 56%, forest 55%, and grassland 56%. Carbon dates showed an average of 1200 yr greater MRT for the NHC fraction than total SOC. Longterm incubation, involving measurement of CO2 evolution and curve fitting, measured active and slow pools. Active-pool C comprised 2 to 8% of the SOC with MRTs of days to months; the slow pool comprised 45 to 65% of the SOC and had MRTs of 10 to 80 yr. Comparison of field C-14 and (13) C data with hydrolysis-incubation data showed a high correlation between independent techniques across soil types and experiments. There were large differences in MRTs depending on the length of the experiment. Insertion of hydrolysis-incubation derived estimates of active (C-a), slow (C-s), and resistant Pools (C-r) into the DAYCENT model provided estimates of daily field CO2 evolution rates. These were well correlated with field CO2 measurements. Although not without some interpretation problems, acid hydrolysis-laboratory incubation is useful for determining SOC pools and fluxes especially when used in combination with associated measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous research on the protection of soil organic C from decomposition suggests that soil texture affects soil C stocks. However, different pools of soil organic matter (SOM) might be differently related to soil texture. Our objective was to examine how soil texture differentially alters the distribution of organic C within physically and chemically defined pools of unprotected and protected SOM. We collected samples from two soil texture gradients where other variables influencing soil organic C content were held constant. One texture gradient (16-60% clay) was located near Stewart Valley, Saskatchewan, Canada and the other (25-50% clay) near Cygnet, OH. Soils were physically fractionated into coarse- and fine-particulate organic matter (POM), silt- and clay-sized particles within microaggregates, and easily dispersed silt-and clay-sized particles outside of microaggregates. Whole-soil organic C concentration was positively related to silt plus clay content at both sites. We found no relationship between soil texture and unprotected C (coarse- and fine-POM C). Biochemically protected C (nonhydrolyzable C) increased with increasing clay content in whole-soil samples, but the proportion of nonhydrolyzable C within silt- and clay-sized fractions was unchanged. As the amount of silt or clay increased, the amount of C stabilized within easily dispersed and microaggregate-associated silt or clay fractions decreased. Our results suggest that for a given level of C inputs, the relationship between mineral surface area and soil organic matter varies with soil texture for physically and biochemically protected C fractions. Because soil texture acts directly and indirectly on various protection mechanisms, it may not be a universal predictor of whole-soil C content.