660 resultados para mathematics curriculum
Resumo:
This paper reports on statements from Professional Development participants who were asked to comment on NAPLAN. The participants were involved in a project designed by the YuMi Deadly Centre (YDC) for implementation into 25 Queensland School to enhance the teaching and learning of mathematics to Aboriginal and Torres Strait Islander students and low SES students. Using an action research framework and a survey questionnaire, the preliminary data obtained from participating principals is mixed, with statements indicating that NAPLAN is a high priority for some schools while others indicated that it does not “tell” the whole story of student learning.
Resumo:
The world’s increasing complexity, competitiveness, interconnectivity, and dependence on technology generate new challenges for nations and individuals that cannot be met by “continuing education as usual” (The National Academies, 2009). With the proliferation of complex systems have come new technologies for communication, collaboration, and conceptualization. These technologies have led to significant changes in the forms of mathematical thinking that are required beyond the classroom. This paper argues for the need to incorporate future-oriented understandings and competencies within the mathematics curriculum, through intellectually stimulating activities that draw upon multidisciplinary content and contexts. The paper also argues for greater recognition of children’s learning potential, as increasingly complex learners capable of dealing with cognitively demanding tasks.
Resumo:
The principal’s leadership and curriculum development are considered the core elements for creating a high performing junior high school. In Taiwan, mathematics curriculum reform has been an ongoing topic since 1994. The pedagogy, classroom interactions, and the underlying philosophy of mathematics education have varied with different versions of guidelines. These changes inevitably increase the requirement for principals’ leadership in order to effectively implement the curriculum reform. Principals’ leadership is essential to the success of the implementation in their school. This study aimed to explore and identify the leadership of junior high school principals whose schools had been judged by the Taipei City Government as Grade A junior high schools. Principals’ implementations of the reformed mathematics curriculum were used as examples to generate insights of their leadership. This study drew upon a multiple-case study approach. Data were collected from interviews, observations, and documentations. Bass and Avolio’s (1997) full range leadership theory provided a structure for gaining insight into these principals’ leadership practices. Five Grade A Taipei junior high school principals participated and shared their leadership concepts and experiences. Findings revealed that the leadership preferences of the five principles varied considerably. Management by exception-active, contingent reward, individualised consideration, and idealised influence were Grade A Taipei junior high school principals’ preferred leadership practices. In addition, principals’ leadership strategies associated with these practices were identified. These principals had adopted a range of leadership strategies according to the staff and school needs. Results of this study have implications for both Taiwanese principals and education departments. Principals can enhance their leadership by gaining more understanding about the Grade A principals’ leadership practices and strategies. Taiwanese education departments can improve school leadership training programs by focusing on these practices and strategies, which may also lead to more effective strategies for implementing national curriculum reform.
Resumo:
The world’s increasing complexity, competitiveness, interconnectivity, and dependence on technology generate new challenges for nations and individuals that cannot be met by “continuing education as usual” (The National Academies, 2009). With the proliferation of complex systems have come new technologies for communication, collaboration, and conceptualization. These technologies have led to significant changes in the forms of mathematical thinking that are required beyond the classroom. This paper argues for the need to incorporate future-oriented understandings and competencies within the mathematics curriculum, through intellectually stimulating activities that draw upon multidisciplinary content and contexts. The paper also argues for greater recognition of children’s learning potential, as increasingly complex learners capable of dealing with cognitively demanding tasks.
Resumo:
The SimCalc Vision and Contributions Advances in Mathematics Education 2013, pp 419-436 Modeling as a Means for Making Powerful Ideas Accessible to Children at an Early Age Richard Lesh, Lyn English, Serife Sevis, Chanda Riggs … show all 4 hide » Look Inside » Get Access Abstract In modern societies in the 21st century, significant changes have been occurring in the kinds of “mathematical thinking” that are needed outside of school. Even in the case of primary school children (grades K-2), children not only encounter situations where numbers refer to sets of discrete objects that can be counted. Numbers also are used to describe situations that involve continuous quantities (inches, feet, pounds, etc.), signed quantities, quantities that have both magnitude and direction, locations (coordinates, or ordinal quantities), transformations (actions), accumulating quantities, continually changing quantities, and other kinds of mathematical objects. Furthermore, if we ask, what kind of situations can children use numbers to describe? rather than restricting attention to situations where children should be able to calculate correctly, then this study shows that average ability children in grades K-2 are (and need to be) able to productively mathematize situations that involve far more than simple counts. Similarly, whereas nearly the entire K-16 mathematics curriculum is restricted to situations that can be mathematized using a single input-output rule going in one direction, even the lives of primary school children are filled with situations that involve several interacting actions—and which involve feedback loops, second-order effects, and issues such as maximization, minimization, or stabilizations (which, many years ago, needed to be postponed until students had been introduced to calculus). …This brief paper demonstrates that, if children’s stories are used to introduce simulations of “real life” problem solving situations, then average ability primary school children are quite capable of dealing productively with 60-minute problems that involve (a) many kinds of quantities in addition to “counts,” (b) integrated collections of concepts associated with a variety of textbook topic areas, (c) interactions among several different actors, and (d) issues such as maximization, minimization, and stabilization.
Resumo:
A mathematics curriculum for the Common Core Curriculum at the Kindergarten level for the USA
Resumo:
This chapter addresses opportunities for problem posing in developing young children’s statistical literacy, with a focus on student-directed investigations. Although the notion of problem posing has broadened in recent years, there nevertheless remains limited research on how problem posing can be integrated within the regular mathematics curriculum, especially in the areas of statistics and probability. The chapter first reviews briefly aspects of problem posing that have featured in the literature over the years. Consideration is next given to the importance of developing children’s statistical literacy in which problem posing is an inherent feature. Some findings from a school playground investigation conducted in four, fourth-grade classes illustrate the different ways in which children posed investigative questions, how they made predictions about their outcomes and compared these with their findings, and the ways in which they chose to represent their findings.
Resumo:
ORIGO Stepping Stones gives mathematics teachers the best of both worlds by delivering lessons and teacher guides on a digital platform blended with the more traditional printed student journals. This uniquely interactive program allows students to participate in exciting learning activites whilst still allowing the teacher to maintain control of learning outcomes. It is the first program in Australia to give teachers activities to differentiate instruction within each lesson and across school years. Written by a team of Australia's leading mathematics educators, this program integrates key research findings in a practical sequence of modules and lessons providing schools with a step-by-step approach to the new curriculum. Click links on the right to explore the program.
Resumo:
The activities introduced here were used in association with a research project in four Year 4 classrooms and are suggested as a motivating way to address several criteria for Measurement and Data in the Australian Curriculum: Mathematics. The activities involve measuring the arm span of one student in a class many times and then of all students once.
Resumo:
The authors have collaboratively used a graphical language to describe their shared knowledge of a small domain of mathematics, which has in turn scaffolded their re-development of a related curriculum for mathematics acceleration. This collaborative use of the graphical language is reported as a simple descriptive case study. This leads to an evaluation of the graphical language’s usefulness as a tool to support the articulation of the structure of mathematics knowledge. In turn, implications are drawn for how the graphical language may be utilised as the detail of the curriculum is further elaborated and communicated to teachers.