316 resultados para level crossing
Resumo:
Level crossing crashes have been shown to result in enormous human and financial cost to society. According to the Australian Transport Safety Bureau (ATSB) [5] a total of 632 Railway Level crossing (RLX) collisions, between trains and road vehicles, occurred in Australia between 2001 and June 2009. The cost of RLX collisions runs into the tens of millions of dollars each year in Australia [6]. In addition, loss of life and injury are commonplace in instances where collisions occur. Based on estimates that 40% of rail related fatalities occur at level crossings [12], it is estimated that 142 deaths between 2001 and June 2009 occurred at RLX. The aim of this paper is to (i) summarise crash patterns in Australia, (ii) review existing international ITS interventions to improve level crossing and (iii) highlights open human factors research related issues. Human factors (e.g., driver error, lapses or violations) have been evidenced as a significant contributing factor in RLX collisions, with drivers of road vehicles particularly responsible for many collisions. Unintentional errors have been found to contribute to 46% of RLX collisions [6] and appear to be far more commonplace than deliberate violations. Humans have been found to be inherently inadequate at using the sensory information available to them to facilitate safe decision-making at RLX and tend to underestimate the speed of approaching large objects due to the non-linear increases in perceived size [6]. Collisions resulting from misjudgements of train approach speed and distance are common [20]. Thus, a fundamental goal for improved RLX safety is the provision of sufficient contextual information to road vehicle drivers to facilitate safe decision-making regarding crossing behaviours.
Resumo:
Railway level crossings are amongst the most complex of road safety control systems, due to the conflicts between road vehicles and rail infrastructure, trains and train operations. Driver behaviour at railway crossings is the major collision factor. The main objective of the present paper was to evaluate the existing conventional warning devices in relation to driver behaviour. The common conventional warning devices in Australia are a stop sign (passive), flashing lights and a half boom-barrier with flashing lights (active). The data were collected using two approaches, namely: field video recordings at selected sites and a driving simulator in a laboratory. This paper describes and compares the driver response results from both the field survey and the driving simulator. The conclusion drawn is that different types of warning systems resulted in varying driver responses at crossings. The results showed that on average driver responses to passive crossings were poor when compared to active ones. The field results were consistent with the simulator results for the existing conventional warning devices and hence they may be used to calibrate the simulator for further evaluation of alternative warning systems.
Resumo:
This paper discusses the challenges of making a case for the adoption of low cost railway level crossings in Australia. Several issues are discussed in this paper including legal issues associated with the treatment of low-exposure passive crossings with low cost level crossing warning devices (LCLCWDs); principles of operation and deployment for LCLCWDs; and technical and human factors aspects of safety and availability. The Cooperative Research Centre (CRC) for Rail Innovation’s affordable level crossings project aims to address a number of these technical and human factors issues through research and field trials.
Resumo:
This paper discusses human factors issues of low cost railway level crossings in Australia. Several issues are discussed in this paper including safety at passive level railway crossings, human factors considerations associated with unavailability of a warning device, and a conceptual model for how safety could be compromised at railway level crossings following prolonged or frequent unavailability. The research plans to quantify safety risk to motorists at level crossings using a Human Reliability Assessment (HRA) method, supported by data collected using an advanced driving simulator. This method aims to identify human error within tasks and task units identified as part of the task analysis process. It is anticipated that by modelling driver behaviour the current study will be able to quantify meaningful task variability including temporal parameters, between participants and within participants. The process of complex tasks such as driving through a level crossing is fundamentally context-bound. Therefore this study also aims to quantify those performance-shaping factors that contribute to vehicle train collisions by highlighting changes in the task units and driver physiology. Finally we will also consider a number of variables germane to ensuring external validity of our results. Without this inclusion, such an analysis could seriously underestimate the probabilistic risk assessment.
Resumo:
This paper discusses human factors issues of low cost railway level crossings in Australia. Several issues are discussed in this paper including safety at passive level railway crossings, human factors considerations associated with unavailability of a warning device, and a conceptual model for how safety could be compromised at railway level crossings following prolonged or frequent unavailability. The research plans to quantify safety risk to motorists at level crossings using a Human Reliability Assessment (HRA) method, supported by data collected using an advanced driving simulator. This method aims to identify human error within tasks and task units identified as part of the task analysis process. It is anticipated that by modelling driver behaviour the current study will be able to quantify meaningful task variability including temporal parameters, between participants and within participants. The process of complex tasks such as driving through a level crossing is fundamentally context-bound. Therefore this study also aims to quantify those performance-shaping factors that contribute to vehicle train collisions by highlighting changes in the task units and driver physiology. Finally we will also consider a number of variables germane to ensuring external validity of our results. Without this inclusion, such an analysis could seriously underestimate risk.
Resumo:
The Cooperative Research Centre (CRC) for Rail Innovation is conducting a tranche of industry-led research projects looking into safer rail level crossings. This paper will provide an overview of the Affordable Level Crossings project, a project that is performing research in both engineering and human factors aspects of low-cost level crossing warning devices (LCLCWDs), and is facilitating a comparative trial of these devices over a period of 12 months in several jurisdictions. Low-cost level crossing warning devices (LCLCWDs) are characterised by the use of alternative technologies for high cost components including train detection and connectivity (e.g. radar, acoustic, magnetic induction train detection systems and wireless connectivity replacing traditional track circuits and wiring). These devices often make use of solar power where mains power is not available, and aim to make substantial savings in lifecycle costs. The project involves trialling low-cost level crossing warning devices in shadow-mode, where devices are installed without the road-user interface at a number of existing level crossing sites that are already equipped with conventional active warning systems. It may be possible that the deployment of lower-cost devices can provide a significantly larger safety benefit over the network than a deployment of expensive conventional devices, as the lower cost would allow more passive level crossing sites to be upgraded with the same capital investment. The project will investigate reliability and safety integrity issues of the low-cost devices, as well as evaluate lifecycle costs and investigate human factors issues related to warning reliability. This paper will focus on the requirements and safety issues of LCLCWDs, and will provide an overview of the Rail CRC projects.
On-road driving studies to understand why drivers behave as they do at regional rail level crossings
Resumo:
Improving safety at rail level crossings is an important part of both road and rail safety strategies. While low in number, crashes between vehicles and trains at level crossings are catastrophic events typically involving multiple fatalities and serious injuries. Advances in driving assessment methods, such as the provision of on-road instrumented test vehicles with eye and head tracking, provide researchers with the opportunity to further understand driver behaviour at such crossings in ways not previously possible. This paper describes a study conducted to further understand the factors that shape driver behaviour at rail level crossings using instrumented vehicles. Twenty-two participants drove an On-Road Test Vehicle (ORTeV) on a predefined route in regional Victoria with a mix of both active (flashing lights with/without boom barriers) and passively controlled (stop, give way) crossings. Data collected included driving performance data, head checks, and interview data to capture driver strategies. The data from an integrated suite of methods demonstrated clearly how behaviour differs at active and passive level crossings, particularly for inexperienced drivers. For example, the head check data clearly show the reliance and expectancies of inexperienced drivers for active warnings even when approaching passively controlled crossings. These studies provide very novel and unique insights into how level crossing design and warnings shape driver behaviour.
Resumo:
Driver behaviour at rail level crossings represents a key area for further research. This paper describes an on-road study comparing novice and experienced driver situation awareness at rural rail level crossings. Participants provided verbal protocols while driving a pre-determined rural route incorporating ten rail level crossings. Driver situation awareness was assessed using a network analysis approach. The analysis revealed key differences between novice and experienced drivers' situation awareness. In particular, the novice drivers seemed to be more reliant on rail level crossing warnings and their situation awareness was less focussed on the environment outside of the rail level crossing. In closing, the implications for rail level crossing safety are discussed.
Resumo:
Recent modelling of socio-economic costs by the Australian railway industry in 2010 has estimated the cost of level crossing accidents to exceed AU$116 million annually. To better understand causal factors that contribute to these accidents, the Cooperative Research Centre for Rail Innovation is running a project entitled Baseline Level Crossing Video. The project aims to improve the recording of level crossing safety data by developing an intelligent system capable of detecting near-miss incidents and capturing quantitative data around these incidents. To detect near-miss events at railway level crossings a video analytics module is being developed to analyse video footage obtained from forward-facing cameras installed on trains. This paper presents a vision base approach for the detection of these near-miss events. The video analytics module is comprised of object detectors and a rail detection algorithm, allowing the distance between a detected object and the rail to be determined. An existing publicly available Histograms of Oriented Gradients (HOG) based object detector algorithm is used to detect various types of vehicles in each video frame. As vehicles are usually seen from a sideway view from the cabin’s perspective, the results of the vehicle detector are verified using an algorithm that can detect the wheels of each detected vehicle. Rail detection is facilitated using a projective transformation of the video, such that the forward-facing view becomes a bird’s eye view. Line Segment Detector is employed as the feature extractor and a sliding window approach is developed to track a pair of rails. Localisation of the vehicles is done by projecting the results of the vehicle and rail detectors on the ground plane allowing the distance between the vehicle and rail to be calculated. The resultant vehicle positions and distance are logged to a database for further analysis. We present preliminary results regarding the performance of a prototype video analytics module on a data set of videos containing more than 30 different railway level crossings. The video data is captured from a journey of a train that has passed through these level crossings.
Resumo:
The introduction of safety technologies into complex socio-technical systems requires an integrated and holistic approach to HF and engineering, considering the effects of failures not only within system boundaries, but also at the interfaces with other systems and humans. Level crossing warning devices are examples of such systems where technically safe states within the system boundary can influence road user performance, giving rise to other hazards that degrade safety of the system. Chris will discuss the challenges that have been encountered to date in developing a safety argument in support of low-cost level crossing warning devices. The design and failure modes of level crossing warning devices are known to have a significant influence on road user performance; however, quantifying this effect is one of the ongoing challenges in determining appropriate reliability and availability targets for low-cost level crossing warning devices.
Resumo:
Level crossing risk continues to be a significant safety concern for the security of rail operations around the world. Over the last decade or so, a third of railway related fatalities occurred as a direct result of collisions between road and rail vehicles in Australia. Importantly, nearly half of these collisions occurred at railway level crossings with no active protection, such as flashing lights or boom barriers. Current practice is to upgrade level crossings that have no active protection. However, the total number of level crossings found across Australia exceed 23,500, and targeting the proportion of these that are considered high risk (e.g. public crossings with passive controls) would cost in excess of AU$3.25 billion based on equipment, installation and commissioning costs of warning devices that are currently type approved. Level crossing warning devices that are low-cost provide a potentially effective control for reducing risk; however, over the last decade, there have been significant barriers and legal issues in both Australia and the US that have foreshadowed their adoption. These devices are designed to have significantly lower lifecycle costs compared with traditional warning devices. They often make use of use of alternative technologies for train detection, wireless connectivity and solar energy supply. This paper describes the barriers that have been encountered for the adoption of these devices in Australia, including the challenges associated with: (1) determining requisite safety levels for such devices; (2) legal issues relating to duty of care obligations of railway operators; and (3) issues of Tort liability around the use of less than fail-safe equipment. This paper provides an overview of a comprehensive safety justification that was developed as part of a project funded by a collaborative rail research initiative established by the Australian government, and describes the conceptual framework and processes being used to justify its adoption. The paper provides a summary of key points from peer review and discusses prospective barriers that may need to be overcome for future adoption. A successful outcome from this process would result in the development of a guideline for decision-making, providing a precedence for adopting low-cost level crossing warning devices in other parts of the world. The framework described in this paper also provides relevance to the review and adoption of analogous technologies in rail and other safety critical industries.
Resumo:
Safety at railway level crossings (RLX) is one part of a wider picture of safety within the whole transport system. Governments, the rail industry and road organisations have used a variety of countermeasures for many years to improve RLX safety. New types of interventions are required in order to reduce the number of crashes and associated social costs at railway crossings. This paper presents the results of a large research program which aimed to assess the effectiveness of emerging Intelligent Transport Systems (ITS) interventions, both on-road and in-vehicle based, to improve the safety of car drivers at RLXs in Australia. The three most promising technologies selected from the literature review and focus groups were tested in an advanced driving simulator to provide a detailed assessment of their effects on driver behaviour. The three interventions were: (i) in-vehicle visual warning using a GPS/smartphone navigation-like system, (ii) in-vehicle audio warning and; (iii) on-road intervention known as valet system (warning lights on the road surface activated as a train approaches). The effects of these technologies on 57 participants were assessed in a systematic approach focusing on the safety of the intervention, effects on the road traffic around the crossings and driver’s acceptance of the technology. Given that the ITS interventions were likely to provide a benefit by improving the driver’s awareness of the crossing status in low visibility conditions, such conditions were investigated through curves in the track before arriving at the crossing. ITS interventions were also expected to improve driver behaviour at crossings with high traffic (blocking back issue), which were also investigated at active crossings. The key findings are: (i) interventions at passive crossings are likely to provide safety benefits; (ii) the benefits of ITS interventions on driver behaviour at active crossings are limited; (iii) the trialled ITS interventions did not show any issues in terms of driver distraction, driver acceptance or traffic delays; (iv) these interventions are easy to use, do not increase driver workload substantially; (v) participants’ intention to use the technology is high and; (vi) participants saw most value in succinct messages about approaching trains as opposed to knowing the RLX locations or the imminence of a collision with a train.
Resumo:
Recent modelling of socio-economic costs by the Australian railway industry in 2010 has estimated the cost of level crossing accidents to exceed AU$116 million annually. To better understand the causal factors of these accidents, a video analytics application is being developed to automatically detect near-miss incidents using forward facing videos from trains. As near-miss events occur more frequently than collisions, by detecting these occurrences there will be more safety data available for analysis. The application that is being developed will improve the objectivity of near-miss reporting by providing quantitative data about the position of vehicles at level crossings through the automatic analysis of video footage. In this paper we present a novel method for detecting near-miss occurrences at railway level crossings from video data of trains. Our system detects and localizes vehicles at railway level crossings. It also detects the position of railways to calculate the distance of the detected vehicles to the railway centerline. The system logs the information about the position of the vehicles and railway centerline into a database for further analysis by the safety data recording and analysis system, to determine whether or not the event is a near-miss. We present preliminary results of our system on a dataset of videos taken from a train that passed through 14 railway level crossings. We demonstrate the robustness of our system by showing the results of our system on day and night videos.
Resumo:
Improving safety at railway level crossings is an important issue for the Australian transport system. Governments, the rail industry and road organisations have tried a variety of countermeasures for many years to improve railway level crossing safety. New types of Intelligent Transport System (ITS) interventions are now emerging due to the availability and the affordability of technology. These interventions target both actively and passively protected railway level crossings and attempt to address drivers’ errors at railway crossings, which are mainly a failure to detect the crossing or the train and misjudgement of the train approach speed and distance. This study aims to assess the effectiveness of three emerging ITS that the rail industry considers implementing in Australia: a visual in-vehicle ITS, an audio in-vehicle ITS, as well as an on-road flashing beacons intervention. The evaluation was conducted on an advanced driving simulator with 20 participants per trialled technology, each participant driving once without any technology and once with one of the ITS interventions. Every participant drove through a range of active and passive crossings with and without trains approaching. Their speed approach of the crossing, head movements and stopping compliance were measured. Results showed that driver behaviour was changed with the three ITS interventions at passive crossings, while limited effects were found at active crossings, even with reduced visibility. The on-road intervention trialled was unsuccessful in improving driver behaviour; the audio and visual ITS improved driver behaviour when a train was approaching. A trend toward worsening driver behaviour with the visual ITS was observed when no trains were approaching. This trend was not observed for the audio ITS intervention, which appears to be the ITS intervention with the highest potential for improving safety at passive crossings.
Resumo:
It is impracticable to upgrade the 18,900 Australian passive crossings as such crossings are often located in remote areas, where power is lacking and with low road and rail traffic. The rail industry is interested in developing innovative in-vehicle technology interventions to warn motorists of approaching trains directly in their vehicles. The objective of this study was therefore to evaluate the benefits of the introduction of such technology. We evaluated the changes in driver performance once the technology is enabled and functioning correctly, as well as the effects of an unsafe failure of the technology? We conducted a driving simulator study where participants (N=15) were familiarised with an in-vehicle audio warning for an extended period. After being familiarised with the system, the technology started failing, and we tested the reaction of drivers with a train approaching. This study has shown that with the traditional passive crossings with RX2 signage, the majority of drivers complied (70%) and looked for trains on both sides of the rail track. With the introduction of the in-vehicle audio message, drivers did not approach crossings faster, did not reduce their safety margins and did not reduce their gaze towards the rail tracks. However participants’ compliance at the stop sign decreased by 16.5% with the technology installed in the vehicle. The effect of the failure of the in-vehicle audio warning technology showed that most participants did not experience difficulties in detecting the approaching train even though they did not receive any warning message. This showed that participants were still actively looking for trains with the system in their vehicle. However, two participants did not stop and one decided to beat the train when they did not receive the audio message, suggesting potential human factors issues to be considered with such technology.