49 resultados para landing fisheries


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: The ability to regulate joint stiffness and coordinate movement during landing when impaired by muscle fatigue has important implications for knee function. Unfortunately, the literature examining fatigue effects on landing mechanics suffers from a lack of consensus. Inconsistent results can be attributed to variable fatigue models, as well as grouping variable responses between individuals when statistically detecting differences between conditions. There remains a need to examine fatigue effects on knee function during landing with attention to these methodological limitations. Aim: The purpose of this study therefore, was to examine the effects of isokinetic fatigue on pre-impact muscle activity and post-impact knee mechanics during landing using singlesubject analysis. Methodology: Sixteen male university students (22.6+3.2 yrs; 1.78+0.07 m; 75.7+6.3 kg) performed maximal concentric and eccentric knee extensions in a reciprocal manner on an isokinetic dynamometer and step-landing trials on 2 occasions. On the first occasion each participant performed 20 step-landing trials from a knee-high platform followed by 75 maximal contractions on the isokinetic dynamometer. The isokinetic data was used to calculate the operational definition of fatigue. On the second occasion, with a minimum rest of 14 days, participants performed 2 sets of 20 step landing trials, followed by isokinetic exercise until the operational definition of fatigue was met and a final post-fatigue set of 20 step-landing trials. Results: Single-subject analyses revealed that isokinetic fatigue of the quadriceps induced variable responses in pre impact activation of knee extensors and flexors (frequency, onset timing and amplitude) and post-impact knee mechanics(stiffness and coordination). In general however, isokinetic fatigue induced sig nificant (p<0.05) reductions in quadriceps activation frequency, delayed onset and increased amplitude. In addition, knee stiffness was significantly (p<0.05) increased in some individuals, as well as impaired sagittal coordination. Conclusions: Pre impact activation and post-impact mechanics were adjusted in patterns that were unique to the individual, which could not be identified using traditional group-based statistical analysis. The results suggested that individuals optimised knee function differently to satisfy competing demands, such as minimising energy expenditure, as well as maximising joint stability and sensory information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Evidence concerning the alteration of knee function during landing suffers from a lack of consensus. This uncertainty can be attributed to methodological flaws, particularly in relation to the statistical analysis of variable human movement data. Aim: The aim of this study was to compare single-subject and group analysis in quantifying alterations in the magnitude and within-participant variability of knee mechanics during a step landing task. Methods: A group of healthy men (N = 12) stepped-down from a knee-high platform for 60 consecutive trials, each trial separated by a 1-minute rest. The magnitude and within-participant variability of sagittal knee stiffness and coordination of the landing leg during the immediate postimpact period were evaluated. Coordination of the knee was quantified in the sagittal plane by calculating the mean absolute relative phase of sagittal shank and thigh motion (MARP1) and between knee rotation and knee flexion (MARP2). Changes across trials were compared between both group and single-subject statistical analyses. Results: The group analysis detected significant reductions in MARP1 magnitude. However, the single-subject analyses detected changes in all dependent variables, which included increases in variability with task repetition. Between-individual variation was also present in the timing, size and direction of alterations to task repetition. Conclusion: The results have important implications for the interpretation of existing information regarding the adaptation of knee mechanics to interventions such as fatigue, footwear or landing height. It is proposed that a familiarisation session be incorporated in future experiments on a single-subject basis prior to an intervention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to perform autonomous emergency (forced) landings is one of the key technology enablers identified for UAS. This paper presents the flight test results of forced landings involving a UAS, in a controlled environment, and which was conducted to ascertain the performances of previously developed (and published) path planning and guidance algorithms. These novel 3-D nonlinear algorithms have been designed to control the vehicle in both the lateral and longitudinal planes of motion. These algorithms have hitherto been verified in simulation. A modified Boomerang 60 RC aircraft is used as the flight test platform, with associated onboard and ground support equipment sourced Off-the-Shelf or developed in-house at the Australian Research Centre for Aerospace Automation (ARCAA). HITL simulations were conducted prior to the flight tests and displayed good landing performance, however, due to certain identified interfacing errors, the flight results differed from that obtained in simulation. This paper details the lessons learnt and presents a plausible solution for the way forward.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an approach to derive requirements for an avionics architecture that provides onboard sense-and-avoid and autonomous emergency forced landing capabilities to a UAS. The approach is based on two design paradigms that (1) derive requirements analyzing the common functionality between these two functions to then derive requirements for sensors, computing capability, interfaces, etc. (2) consider the risk and safety mitigation associated with these functions to derive certification requirements for the system design. We propose to use the Aircraft Certification Matrix (ACM) approach to tailor the system Development Assurance Levels (DAL) and architecture requirements in accordance with acceptable risk criteria. This architecture is developed under the name “Flight Guardian”. Flight Guardian is an avionics architecture that integrates common sensory elements that are essential components of any UAS that is required to be dependable. The Flight Guardian concept is also applicable to conventionally piloted aircraft, where it will serve to reduce cockpit workload.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper outlines a feasible scheme to extract deck trend when a rotary-wing unmanned aerial vehicle (RUAV)approaches an oscillating deck. An extended Kalman filter (EKF) is de- veloped to fuse measurements from multiple sensors for effective estimation of the unknown deck heave motion. Also, a recursive Prony Analysis (PA) procedure is proposed to implement online curve-fitting of the estimated heave mo- tion. The proposed PA constructs an appropriate model with parameters identified using the forgetting factor recursive least square (FFRLS)method. The deck trend is then extracted by separating dominant modes. Performance of the proposed procedure is evaluated using real ship motion data, and simulation results justify the suitability of the proposed method into safe landing of RUAVs operating in a maritime environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to provide realistic data for air pollution inventories and source apportionment at airports, the morphology and composition of ultrafine particles (UFP) in aircraft engine exhaust were measured and characterized. For this purpose, two independent measurement techniques were employed to collect emissions during normal takeoff and landing operations at Brisbane Airport, Australia. PM1 emissions in the airfield were collected on filters and analyzed using the particle-induced X-ray emission (PIXE) technique. Morphological and compositional analyses of individual ultrafine particles in aircraft plumes were performed on silicon nitride membrane grids using transmission electron microscopy (TEM) combined with energy-dispersive X-ray microanalysis (EDX). TEM results showed that the deposited particles were in the range of 5 to 100 nm in diameter, had semisolid spherical shapes and were dominant in the nucleation mode (18 – 20 nm). The EDX analysis showed the main elements in the nucleation particles were C, O, S and Cl. The PIXE analysis of the airfield samples was generally in agreement with the EDX in detecting S, Cl, K, Fe and Si in the particles. The results of this study provide important scientific information on the toxicity of aircraft exhaust and their impact on local air quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an alternative approach to image segmentation by using the spatial distribution of edge pixels as opposed to pixel intensities. The segmentation is achieved by a multi-layered approach and is intended to find suitable landing areas for an aircraft emergency landing. We combine standard techniques (edge detectors) with novel developed algorithms (line expansion and geometry test) to design an original segmentation algorithm. Our approach removes the dependency on environmental factors that traditionally influence lighting conditions, which in turn have negative impact on pixel-based segmentation techniques. We present test outcomes on realistic visual data collected from an aircraft, reporting on preliminary feedback about the performance of the detection. We demonstrate consistent performances over 97% detection rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose The neuromuscular mechanisms determining the mechanical behaviour of the knee during landing impact remain poorly understood. It was hypothesised that neuromuscular preparation is subject-specific and ranges along a continuum from passive to active. Methods A group of healthy men (N = 12) stepped-down from a knee-high platform for 60 consecutive trials. Surface EMG of the quadriceps and hamstrings was used to determine pre-impact onset timing, activation amplitude and cocontraction for each trial. Partial least squares regression was used to associate pre-impact preparation with post-impact knee stiffness and coordination. Results The group analysis revealed few significant changes in pre-impact preparation across trial blocks. Single-subject analyses revealed changes in muscle activity that varied in size and direction between individuals. Further, the association between pre-impact preparation and post-impact knee mechanics was subject-specific and ranged along a continuum of strategies. Conclusion The findings suggest that neuromuscular preparation during step landing is subject-specific and its association to post-impact knee mechanics occurs along a continuum, ranging from passive to active control strategies. Further work should examine the implications of these strategies on the distribution of knee forces in-vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a practical prediction procedure for vertical displacement of a Rotarywing Unmanned Aerial Vehicle (RUAV) landing deck in the presence of stochastic sea state disturbances. A proper time series model tending to capture characteristics of the dynamic relationship between an observer and a landing deck is constructed, with model orders determined by a novel principle based on Bayes Information Criterion (BIC) and coefficients identified using the Forgetting Factor Recursive Least Square (FFRLS) method. In addition, a fast-converging online multi-step predictor is developed, which can be implemented more rapidly than the Auto-Regressive (AR) predictor as it requires less memory allocations when updating coefficients. Simulation results demonstrate that the proposed prediction approach exhibits satisfactory prediction performance, making it suitable for integration into ship-helicopter approach and landing guidance systems in consideration of computational capacity of the flight computer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents a disturbance attenuation controller for horizontal position stabilisation for hover and automatic landings of a rotary-wing unmanned aerial vehicle (RUAV) operating close to the landing deck in rough seas. Based on a helicopter model representing aerodynamics during the landing phase, a non-linear state feedback H∞ controller is designed to achieve rapid horizontal position tracking in a gusty environment. Practical constraints including flapping dynamics, servo dynamics and time lag effect are considered. A high-fidelity closed-loop simulation using parameters of the Vario XLC gas-turbine helicopter verifies performance of the proposed horizontal position controller. The proposed controller not only increases the disturbance attenuation capability of the RUAV, but also enables rapid position response when gusts occur. Comparative studies show that the H∞ controller exhibits performance improvement and can be applied to ship/RUAV landing systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel and practical procedure for estimating the mean deck height to assist in automatic landing operations of a Rotorcraft Unmanned Aerial Vehicle (RUAV) in harsh sea environments. A modified Prony Analysis (PA) procedure is outlined to deal with real-time observations of deck displacement, which involves developing an appropriate dynamic model to approach real deck motion with parameters identified through implementing the Forgetting Factor Recursive Least Square (FFRLS) method. The model order is specified using a proper order-selection criterion based on minimizing the summation of accumulated estimation errors. In addition, a feasible threshold criterion is proposed to separate the dominant components of deck displacement, which results in an accurate instantaneous estimation of the mean deck position. Simulation results demonstrate that the proposed recursive procedure exhibits satisfactory estimation performance when applied to real-time deck displacement measurements, making it well suited for integration into ship-RUAV approach and landing guidance systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an innovative and practical approach to controlling heave motion in the presence of acute stochastic atmospheric disturbances during landing operations of an Unmanned Autonomous Helicopter (UAH). A heave motion model of an UAH is constructed for the purpose of capturing dynamic variations of thrust due to horizontal wind gusts. Additionally, through construction of an effective observer to estimate magnitudes of random gusts, a promising and feasible feedback-feedforward PD controller is developed, based on available measurements from onboard equipment. The controller dynamically and synchronously compensates for aerodynamic variations of heave motion resulting from gust influence, to increase the disturbance-attenuation ability of the UAH in a windy environment. Simulation results justify the reliability and efficiency of the suggested gust observer to estimate gust levels when applied to the heave motion model of a small unmanned helicopter, and verify suitability of the recommended control strategy to realistic environmental conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Safety concerns in the operation of autonomous aerial systems require safe-landing protocols be followed during situations where the a mission should be aborted due to mechanical or other failure. On-board cameras provide information that can be used in the determination of potential landing sites, which are continually updated and ranked to prevent injury and minimize damage. Pulse Coupled Neural Networks have been used for the detection of features in images that assist in the classification of vegetation and can be used to minimize damage to the aerial vehicle. However, a significant drawback in the use of PCNNs is that they are computationally expensive and have been more suited to off-line applications on conventional computing architectures. As heterogeneous computing architectures are becoming more common, an OpenCL implementation of a PCNN feature generator is presented and its performance is compared across OpenCL kernels designed for CPU, GPU and FPGA platforms. This comparison examines the compute times required for network convergence under a variety of images obtained during unmanned aerial vehicle trials to determine the plausibility for real-time feature detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a system which enhances the capabilities of a light general aviation aircraft to land autonomously in case of an unscheduled event such as engine failure. The proposed system will not only increase the level of autonomy for the general aviation aircraft industry but also increase the level of dependability. Safe autonomous landing in case of an engine failure with a certain level of reliability is the primary focus of our work as both safety and reliability are attributes of dependability. The system is designed for a light general aviation aircraft but can be extended for dependable unmanned aircraft systems. The underlying system components are computationally efficient and provides continuous situation assessment in case of an emergency landing. The proposed system is undergoing an evaluation phase using an experimental platform (Cessna 172R) in real world scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Safety concerns in the operation of autonomous aerial systems require safe-landing protocols be followed during situations where the mission should be aborted due to mechanical or other failure. This article presents a pulse-coupled neural network (PCNN) to assist in the vegetation classification in a vision-based landing site detection system for an unmanned aircraft. We propose a heterogeneous computing architecture and an OpenCL implementation of a PCNN feature generator. Its performance is compared across OpenCL kernels designed for CPU, GPU, and FPGA platforms. This comparison examines the compute times required for network convergence under a variety of images to determine the plausibility for real-time feature detection.