177 resultados para experimental modal analysis
Resumo:
Mode indicator functions (MIFs) are used in modal testing and analysis as a means of identifying modes of vibration, often as a precursor to modal parameter estimation. Various methods have been developed since the MIF was introduced four decades ago. These methods are quite useful in assisting the analyst to identify genuine modes and, in the case of the complex mode indicator function, have even been developed into modal parameter estimation techniques. Although the various MIFs are able to indicate the existence of a mode, they do not provide the analyst with any descriptive information about the mode. This paper uses the simple summation type of MIF to develop five averaged and normalised MIFs that will provide the analyst with enough information to identify whether a mode is longitudinal, vertical, lateral or torsional. The first three functions, termed directional MIFs, have been noted in the literature in one form or another; however, this paper introduces a new twist on the MIF by introducing two MIFs, termed torsional MIFs, that can be used by the analyst to identify torsional modes and, moreover, can assist in determining whether the mode is of a pure torsion or sway type (i.e., having a rigid cross-section) or a distorted twisting type. The directional and torsional MIFs are tested on a finite element model based simulation of an experimental modal test using an impact hammer. Results indicate that the directional and torsional MIFs are indeed useful in assisting the analyst to identify whether a mode is longitudinal, vertical, lateral, sway, or torsion.
Resumo:
This paper uses dynamic computer simulation techniques to apply a procedure using vibration-based methods for damage assessment in multiple-girder composite bridge. In addition to changes in natural frequencies, this multi-criteria procedure incorporates two methods, namely the modal flexibility and the modal strain energy method. Using the numerically simulated modal data obtained through finite element analysis software, algorithms based on modal flexibility and modal strain energy change before and after damage are obtained and used as the indices for the assessment of structural health state. The feasibility and capability of the approach is demonstrated through numerical studies of proposed structure with six damage scenarios. It is concluded that the modal strain energy method is competent for application on multiple-girder composite bridge, as evidenced through the example treated in this paper.
Identification of acoustic emission wave modes for accurate source location in plate-like structures
Resumo:
Acoustic emission (AE) technique is a popular tool used for structural health monitoring of civil, mechanical and aerospace structures. It is a non-destructive method based on rapid release of energy within a material by crack initiation or growth in the form of stress waves. Recording of these waves by means of sensors and subsequent analysis of the recorded signals convey information about the nature of the source. Ability to locate the source of stress waves is an important advantage of AE technique; but as AE waves travel in various modes and may undergo mode conversions, understanding of the modes (‘modal analysis’) is often necessary in order to determine source location accurately. This paper presents results of experiments aimed at finding locations of artificial AE sources on a thin plate and identifying wave modes in the recorded signal waveforms. Different source locating techniques will be investigated and importance of wave mode identification will be explored.
Resumo:
Dynamic computer simulation techniques are used to develop and apply a multi-criteria procedure, incorporating changes in natural frequencies, modal flexibility and the modal strain energy, for damage localisation in beams and plates. Numerically simulated modal data obtained through finite element analyses are used to develop algorithms based on changes of modal flexibility and modal strain energy before and after damage and used as the indices for assessment of the state of structural health. The proposed procedure is illustrated through its application to flexural members under different damage scenarios and the results confirm its feasibility for damage assessment.
Resumo:
Power system stabilizer (PSS) is one of the most important controllers in modern power systems for damping low frequency oscillations. Many efforts have been dedicated to design the tuning methodologies and allocation techniques to obtain optimal damping behaviors of the system. Traditionally, it is tuned mostly for local damping performance, however, in order to obtain a globally optimal performance, the tuning of PSS needs to be done considering more variables. Furthermore, with the enhancement of system interconnection and the increase of system complexity, new tools are required to achieve global tuning and coordination of PSS to achieve optimal solution in a global meaning. Differential evolution (DE) is a recognized as a simple and powerful global optimum technique, which can gain fast convergence speed as well as high computational efficiency. However, as many other evolutionary algorithms (EA), the premature of population restricts optimization capacity of DE. In this paper, a modified DE is proposed and applied for optimal PSS tuning of 39-Bus New-England system. New operators are introduced to reduce the probability of getting premature. To investigate the impact of system conditions on PSS tuning, multiple operating points will be studied. Simulation result is compared with standard DE and particle swarm optimization (PSO).
Resumo:
This research has successfully developed a novel synthetic structural health monitoring system model that is cost-effective and flexible in sensing and data acquisition; and robust in the structural safety evaluation aspect for the purpose of long-term and frequent monitoring of large-scale civil infrastructure during their service lives. Not only did it establish a real-world structural monitoring test-bed right at the heart of QUT Gardens Point Campus but it can also facilitate reliable and prompt protection for any built infrastructure system as well as the user community involved.
Resumo:
In this paper, cognitive load analysis via acoustic- and CAN-Bus-based driver performance metrics is employed to assess two different commercial speech dialog systems (SDS) during in-vehicle use. Several metrics are proposed to measure increases in stress, distraction and cognitive load and we compare these measures with statistical analysis of the speech recognition component of each SDS. It is found that care must be taken when designing an SDS as it may increase cognitive load which can be observed through increased speech response delay (SRD), changes in speech production due to negative emotion towards the SDS, and decreased driving performance on lateral control tasks. From this study, guidelines are presented for designing systems which are to be used in vehicular environments.
Resumo:
To detect and annotate the key events of live sports videos, we need to tackle the semantic gaps of audio-visual information. Previous work has successfully extracted semantic from the time-stamped web match reports, which are synchronized with the video contents. However, web and social media articles with no time-stamps have not been fully leveraged, despite they are increasingly used to complement the coverage of major sporting tournaments. This paper aims to address this limitation using a novel multimodal summarization framework that is based on sentiment analysis and players' popularity. It uses audiovisual contents, web articles, blogs, and commentators' speech to automatically annotate and visualize the key events and key players in a sports tournament coverage. The experimental results demonstrate that the automatically generated video summaries are aligned with the events identified from the official website match reports.
Resumo:
Strengthening of steel structures using externally-bonded carbon fibre reinforced polymers ‘CFRP’ is a rapidly developing technique. This paper describes the behaviour of axially loaded flat steel plates strengthened using carbon fibre reinforced polymer sheets. Two steel plates were joined together with adhesive and followed by the application of carbon fibre sheet double strap joint with different bond lengths. The behaviour of the specimens was further investigated by using nonlinear finite element analysis to predict the failure modes and load capacity. In this study, bond failure is the dominant failure mode for normal modulus (240 GPa) CFRP bonding which closely matched the results of finite elements. The predicted ultimate loads from the FE analysis are found to be in good agreement with experimental values.
Resumo:
This thesis provides an experimental and computational platform for investigating the performance and behaviour of water filled, plastic portable road safety barriers in an isolated impact scenario. A schedule of experimental impact tests were conducted assessing the impact response of an existing design of road safety barrier utilising a novel horizontal impact testing system. A coupled finite element and smooth particle hydrodynamic model of the barrier system was developed and validated against the results of the experimental tests. The validated model was subsequently used to assess the effect of certain composite materials on the impact performance of the water filled, portable road safety barrier system.
Resumo:
Spatial organisation of proteins according to their function plays an important role in the specificity of their molecular interactions. Emerging proteomics methods seek to assign proteins to sub-cellular locations by partial separation of organelles and computational analysis of protein abundance distributions among partially separated fractions. Such methods permit simultaneous analysis of unpurified organelles and promise proteome-wide localisation in scenarios wherein perturbation may prompt dynamic re-distribution. Resolving organelles that display similar behavior during a protocol designed to provide partial enrichment represents a possible shortcoming. We employ the Localisation of Organelle Proteins by Isotope Tagging (LOPIT) organelle proteomics platform to demonstrate that combining information from distinct separations of the same material can improve organelle resolution and assignment of proteins to sub-cellular locations. Two previously published experiments, whose distinct gradients are alone unable to fully resolve six known protein-organelle groupings, are subjected to a rigorous analysis to assess protein-organelle association via a contemporary pattern recognition algorithm. Upon straightforward combination of single-gradient data, we observe significant improvement in protein-organelle association via both a non-linear support vector machine algorithm and partial least-squares discriminant analysis. The outcome yields suggestions for further improvements to present organelle proteomics platforms, and a robust analytical methodology via which to associate proteins with sub-cellular organelles.
Resumo:
This work investigated the impact of the HVAC filtration system and indoor particle sources on the relationship between indoor and outdoor airborne particle size and concentrations in an operating room. Filters with efficiency between 65% and 99.97% were used in the investigation and indoor and outdoor particle size and concentrations were measured. A balance mass model was used for the simulation of the impact of the surgical team, deposition rate, HVAC exhaust and air change rates on indoor particle concentration. The experimental results showed that high efficiency filters would not be expected to decrease the risk associated with indoor particles larger than approximately 1 µm in size because normal filters are relatively efficient for these large particles. A good fraction of outdoor particles were removed by deposition on the HVAC system surfaces and this deposition increased with particle size. For particles of 0.3-0.5 µm in diameter, particle reduction was about 23%, while for particles >10 µm the loss was about 78%. The modelling results showed that depending on the type of filter used, the surgical team generated between 93-99% of total particles, while the outdoor air contributed only 1-6%.
Resumo:
An experiment was conducted to investigate direction judgment in a curved corridor. Each participant walked through the curved corridor. A direction was presented to participants at the entrance, and they were asked to point this direction at two points within the corridor. The present study proposed two hypotheses : (a) participants underestimate the change of their traveling direction while walking; (b) participants use four-direction reference axes (front, back, left, and right) for direction judgment. Both hypotheses were supported, and it was suggested that participants estimated the change of their traveling direction to be approximately 90% of the actual change.
Resumo:
The problem of modal choice between rail and air arises as public awareness of carbon dioxide (CO2) emissions by the transportation sector rises. In this paper, we answer this question quantitatively by performing an efficiency benchmarking analysis that takes into account life-cycle CO2 emission due to transport service provision. The paper employs nonparametric efficiency estimation methods, namely a slacks-based inefficiency measure, as well as a more conventional directional distance function approach. We apply them to a panel data set for three major railway companies and the aviation sector in Japan for the period from 1999 to 2007. Results shows that, contrary to the common argument, air transport can still be more socially efficient than rail transport, even when the environmental load due to CO2 emission is incorporated. This is due to the aviation sector's extremely low user cost, measured in terms of in-vehicle time. In other words, aviation is a necessary transportation mode for those with a very high willingness to pay for their time.