162 resultados para degree mobility


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Policy decisions are frequently influenced by more than research results alone. This review examines one road safety countermeasure, graduated driver licensing, in three jurisdictions and identifies how the conflict between mobility and safety goals can influence policy decisions relating to this countermeasure. Evaluations from around the world of graduated driver licensing have demonstrated clear reductions in crashes for young drivers. However, the introduction of this countermeasure may be affected, both positively and negatively, by the conflict some policy makers experience between ensuring individuals remain both mobile and safe as drivers. This review highlights how this conflict in policy decision making can serve to either facilitate or hinder the introduction of graduated driver licensing systems. However, policy makers whose focus on mobility is too strong when compared with safety may be mistaken, with evidence suggesting that after a graduated driver licensing system is introduced young drivers adapt their behaviour to the new system and remain mobile. As a result, policy makers should consciously acknowledge the conflict between mobility and safety and consider an appropriate balance in order to introduce these systems. Improvements to the licensing system can then be made in an incremental manner as the balance between these two priorities change. Policy makers can achieve an appropriate balance by using empirical evidence as a basis for their decisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rise of the ‘practice-led’ research approach has given us a new way of understanding what creative practice in art, design and media can do in the academy and the world— it can materialise new ideas and forms into being as a form of experimental research. Yet, to date, attention around the world, and especially in Australia, has been chiefly directed at the postgraduate research degrees, most notably the PhD or doctoral equivalents. Recent mapping projects and surveys of practice-led research in Australia reveal much about the institutional conditions of higher degree researchers, supervisors, examiners and research training (Baker et al 2009; Evans et al 2003; Dally et al 2004; Paltridge et al 2009; Phillips et al 2009). Given this focus, we might well ask: is the practice-led approach destined to be a part of the higher degree ghetto only, or does it have an afterlife? What is the place of ‘practice-led’ beyond the postgraduate degree? After all postgraduate researchers do not remain postgraduates forever, and perhaps the practice-led approach to research may have benefits in wider university, professional and communal contexts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In teaching introductory economics there has been a tendency to put a lot of emphasis on imparting abstract models and technical skills to students (Stilwell, 2005; Voss, Blais, Greens, & Ahwesh, 1986). This model building approach has the merit of preparing the grounding for students 10 pursue further studies in economics. However, in a business degree with only a small proportion of students majoring in economics, such an approach tend to alienate the majority of students transiting from high school in to university. Surveys in Europe and Australia found that students complained about the lack of relevance of economics courses to the real world and the over-reliance of abstract mathematical modelling (Kirman, 2001; Lewis and Norris, 1997; Siegfried & Round, 2000). BSB112 Economics 1 is one of the eight faculty core units in the Faculty of Business at QUT, with over 1000 students in each semester. In semester I 2008, a new approach to teaching this unit was designed aiming to achieve three inter-related objectives: (1) to provide business students with a first insight into economic thinking and language, (2) to integrate economic analysis with current Australian social, environmental and political issues, and (3) to cater for students with a wide range of academic needs. Strategies used to achieve these objectives included writing up a new text which departs from traditional economics textbooks in important ways, integrating students' cultures in teaching and learning activities, and devising a new assessment format to encourage development of research skills and applications rather than reproduction of factual knowledge. This paper will document the strategies used in this teaching innovation, present quantitative and qualitative evidence to evaluate this new approach and suggest ways of further improvement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current-voltage (I-V) curves of Poly(3-hexyl-thiophene) (P3HT) diodes have been collected to investigate the polymer hole-dominated charge transport. At room temperature and at low electric fields the I-V characteristic is purely Ohmic whereas at medium-high electric fields, experimental data shows that the hole transport is Trap Dominated - Space Charge Limited Current (TD-SCLC). In this regime, it is possible to extract the I-V characteristic of the P3HT/Al junction showing the ideal Schottky diode behaviour over five orders of magnitude. At high-applied electric fields, holes’ transport is found to be in the trap free SCLC regime. We have measured and modelled in this regime the holes’ mobility to evaluate its dependence from the electric field applied and the temperature of the device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research on efficient pairing implementation has focussed on reducing the loop length and on using high-degree twists. Existence of twists of degree larger than 2 is a very restrictive criterion but luckily constructions for pairing-friendly elliptic curves with such twists exist. In fact, Freeman, Scott and Teske showed in their overview paper that often the best known methods of constructing pairing-friendly elliptic curves over fields of large prime characteristic produce curves that admit twists of degree 3, 4 or 6. A few papers have presented explicit formulas for the doubling and the addition step in Miller’s algorithm, but the optimizations were all done for the Tate pairing with degree-2 twists, so the main usage of the high- degree twists remained incompatible with more efficient formulas. In this paper we present efficient formulas for curves with twists of degree 2, 3, 4 or 6. These formulas are significantly faster than their predecessors. We show how these faster formulas can be applied to Tate and ate pairing variants, thereby speeding up all practical suggestions for efficient pairing implementations over fields of large characteristic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

What happens when the traditional framing mechanisms of our performance environments are removed and we are forced as directors to work with actors in digital environments that capture performance in 360 degrees? As directors contend with the challenges of interactive performance, the emergence of the online audience and the powerful influence of the games industry, how can we approach the challenges of directing work that is performance captured and presented in real time using motion capture and associated 3D imaging software? The 360 degree real time capture of performance, while allowing for an unlimited amount of framing potential, demands a unique and uncompromisingly disciplined style of direction and performance that has thus far remained unstudied and unquantified. By a close analysis of the groundbreaking work of artists like Robert Zemeckis and the Wetta Digital studio it is possible to begin to quantify what the technical requirements and challenges of 360 degree direction might be, but little has been discovered about the challenges of communicating the unlimited potential of framing and focus to the actors who work with these directors within these systems. It cannot be argued that the potential of theatrical space has evolved beyond the physical and moved into a more accessible virtual and digitised form, so how then can we direct for this unlimited potential and where do we place the focus of our directed (and captured) performance?

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogel polymers are used for the manufacture of soft (or disposable) contact lenses worldwide today, but have a tendency to dehydrate on the eye. In vitro methods that can probe the potential for a given hydrogel polymer to dehydrate in vivo are much sought after. Nuclear magnetic resonance (NMR) has been shown to be effective in characterising water mobility and binding in similar systems (Barbieri, Quaglia et al., 1998, Larsen, Huff et al., 1990, Peschier, Bouwstra et al., 1993), predominantly through measurement of the spin-lattice relaxation time (T1), the spinspin relaxation time (T2) and the water diffusion coefficient (D). The aim of this work was to use NMR to quantify the molecular behaviour of water in a series of commercially available contact lens hydrogels, and relate these measurements to the binding and mobility of the water, and ultimately the potential for the hydrogel to dehydrate. As a preliminary study, in vitro evaporation rates were measured for a set of commercial contact lens hydrogels. Following this, comprehensive measurement of the temperature and water content dependencies of T1, T2 and D was performed for a series of commercial hydrogels that spanned the spectrum of equilibrium water content (EWC) and common compositions of contact lenses that are manufactured today. To quantify material differences, the data were then modelled based on theory that had been used for similar systems in the literature (Walker, Balmer et al., 1989, Hills, Takacs et al., 1989). The differences were related to differences in water binding and mobility. The evaporative results suggested that the EWC of the material was important in determining a material's potential to dehydrate in this way. Similarly, the NMR water self-diffusion coefficient was also found to be largely (if not wholly) determined by the WC. A specific binding model confirmed that the we was the dominant factor in determining the diffusive behaviour, but also suggested that subtle differences existed between the materials used, based on their equilibrium we (EWC). However, an alternative modified free volume model suggested that only the current water content of the material was important in determining the diffusive behaviour, and not the equilibrium water content. It was shown that T2 relaxation was dominated by chemical exchange between water and exchangeable polymer protons for materials that contained exchangeable polymer protons. The data was analysed using a proton exchange model, and the results were again reasonably correlated with EWC. Specifically, it was found that the average water mobility increased with increasing EWe approaching that of free water. The T1 relaxation was also shown to be reasonably well described by the same model. The main conclusion that can be drawn from this work is that the hydrogel EWe is an important parameter, which largely determines the behaviour of water in the gel. Higher EWe results in a hydrogel with water that behaves more like bulk water on average, or is less strongly 'bound' on average, compared with a lower EWe material. Based on the set of materials used, significant differences due to composition (for materials of the same or similar water content) could not be found. Similar studies could be used in the future to highlight hydrogels that deviate significantly from this 'average' behaviour, and may therefore have the least/greatest potential to dehydrate on the eye.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rock pools, salt pans, cliffs and bluffs, and the banks of the Coorooman and Pumpkin Creeks within Darumbal and Woppaburra Country are used as a backdrop in this paper, which offers an exploration of one woman’s quest to undertake her PhD and develop as an Indigenous scholar. The paper describes this Country and the use of Country to nourish, develop, stimulate and support the intellect. It draws on Australian and international literature to demonstrate the intellectual growth and development of Indigenous scholars. The paper offers a highly personal narrative of intellectual journeying which shows how we can be agents of change and power in our individual lives, even while power is being exercised over us and we are being oppressed and marginalised as Indigenous peoples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the main causes of above knee or transfemoral amputation (TFA) in the developed world is trauma to the limb. The number of people undergoing TFA due to limb trauma, particularly due to war injuries, has been increasing. Typically the trauma amputee population, including war-related amputees, are otherwise healthy, active and desire to return to employment and their usual lifestyle. Consequently there is a growing need to restore long-term mobility and limb function to this population. Traditionally transfemoral amputees are provided with an artificial or prosthetic leg that consists of a fabricated socket, knee joint mechanism and a prosthetic foot. Amputees have reported several problems related to the socket of their prosthetic limb. These include pain in the residual limb, poor socket fit, discomfort and poor mobility. Removing the socket from the prosthetic limb could eliminate or reduce these problems. A solution to this is the direct attachment of the prosthesis to the residual bone (femur) inside the residual limb. This technique has been used on a small population of transfemoral amputees since 1990. A threaded titanium implant is screwed in to the shaft of the femur and a second component connects between the implant and the prosthesis. A period of time is required to allow the implant to become fully attached to the bone, called osseointegration (OI), and be able to withstand applied load; then the prosthesis can be attached. The advantages of transfemoral osseointegration (TFOI) over conventional prosthetic sockets include better hip mobility, sitting comfort and prosthetic retention and fewer skin problems on the residual limb. However, due to the length of time required for OI to progress and to complete the rehabilitation exercises, it can take up to twelve months after implant insertion for an amputee to be able to load bear and to walk unaided. The long rehabilitation time is a significant disadvantage of TFOI and may be impeding the wider adoption of the technique. There is a need for a non-invasive method of assessing the degree of osseointegration between the bone and the implant. If such a method was capable of determining the progression of TFOI and assessing when the implant was able to withstand physiological load it could reduce the overall rehabilitation time. Vibration analysis has been suggested as a potential technique: it is a non destructive method of assessing the dynamic properties of a structure. Changes in the physical properties of a structure can be identified from changes in its dynamic properties. Consequently vibration analysis, both experimental and computational, has been used to assess bone fracture healing, prosthetic hip loosening and dental implant OI with varying degrees of success. More recently experimental vibration analysis has been used in TFOI. However further work is needed to assess the potential of the technique and fully characterise the femur-implant system. The overall aim of this study was to develop physical and computational models of the TFOI femur-implant system and use these models to investigate the feasibility of vibration analysis to detect the process of OI. Femur-implant physical models were developed and manufactured using synthetic materials to represent four key stages of OI development (identified from a physiological model), simulated using different interface conditions between the implant and femur. Experimental vibration analysis (modal analysis) was then conducted using the physical models. The femur-implant models, representing stage one to stage four of OI development, were excited and the modal parameters obtained over the range 0-5kHz. The results indicated the technique had limited capability in distinguishing between different interface conditions. The fundamental bending mode did not alter with interfacial changes. However higher modes were able to track chronological changes in interface condition by the change in natural frequency, although no one modal parameter could uniquely distinguish between each interface condition. The importance of the model boundary condition (how the model is constrained) was the key finding; variations in the boundary condition altered the modal parameters obtained. Therefore the boundary conditions need to be held constant between tests in order for the detected modal parameter changes to be attributed to interface condition changes. A three dimensional Finite Element (FE) model of the femur-implant model was then developed and used to explore the sensitivity of the modal parameters to more subtle interfacial and boundary condition changes. The FE model was created using the synthetic femur geometry and an approximation of the implant geometry. The natural frequencies of the FE model were found to match the experimental frequencies within 20% and the FE and experimental mode shapes were similar. Therefore the FE model was shown to successfully capture the dynamic response of the physical system. As was found with the experimental modal analysis, the fundamental bending mode of the FE model did not alter due to changes in interface elastic modulus. Axial and torsional modes were identified by the FE model that were not detected experimentally; the torsional mode exhibited the largest frequency change due to interfacial changes (103% between the lower and upper limits of the interface modulus range). Therefore the FE model provided additional information on the dynamic response of the system and was complementary to the experimental model. The small changes in natural frequency over a large range of interface region elastic moduli indicated the method may only be able to distinguish between early and late OI progression. The boundary conditions applied to the FE model influenced the modal parameters to a far greater extent than the interface condition variations. Therefore the FE model, as well as the experimental modal analysis, indicated that the boundary conditions need to be held constant between tests in order for the detected changes in modal parameters to be attributed to interface condition changes alone. The results of this study suggest that in a clinical setting it is unlikely that the in vivo boundary conditions of the amputated femur could be adequately controlled or replicated over time and consequently it is unlikely that any longitudinal change in frequency detected by the modal analysis technique could be attributed exclusively to changes at the femur-implant interface. Therefore further development of the modal analysis technique would require significant consideration of the clinical boundary conditions and investigation of modes other than the bending modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose. To investigate evidence-based visual field size criteria for referral of low-vision (LV) patients for mobility rehabilitation. Methods. One hundred and nine participants with LV and 41 age-matched participants with normal sight (NS) were recruited. The LV group was heterogeneous with diverse causes of visual impairment. We measured binocular kinetic visual fields with the Humphrey Field Analyzer and mobility performance on an obstacle-rich, indoor course. Mobility was assessed as percent preferred walking speed (PPWS) and number of obstacle-contact errors. The weighted kappa coefficient of association (κr) was used to discriminate LV participants with both unsafe and inefficient mobility from those with adequate mobility on the basis of their visual field size for the full sample and for subgroups according to type of visual field loss and whether or not the participants had previously received orientation and mobility training. Results. LV participants with both PPWS <38% and errors >6 on our course were classified as having inadequate (inefficient and unsafe) mobility compared with NS participants. Mobility appeared to be first compromised when the visual field was less than about 1.2 steradians (sr; solid angle of a circular visual field of about 70° diameter). Visual fields <0.23 and 0.63 sr (31 to 52° diameter) discriminated patients with at-risk mobility for the full sample and across the two subgroups. A visual field of 0.05 sr (15° diameter) discriminated those with critical mobility. Conclusions. Our study suggests that: practitioners should be alert to potential mobility difficulties when the visual field is less than about 1.2 sr (70° diameter); assessment for mobility rehabilitation may be warranted when the visual field is constricted to about 0.23 to 0.63 sr (31 to 52° diameter) depending on the nature of their visual field loss and previous history (at risk); and mobility rehabilitation should be conducted before the visual field is constricted to 0.05 sr (15° diameter; critical).