28 resultados para cutaneous toxicity
Resumo:
Although both the size and chemical composition of ambient particles are important parameters in determining their toxicities, their relative contributions are unclear (Heal et al., 2012). Children are particularly at risk to the detrimental health effects that have been linked to long term exposure to airborne particles (See e.g. Ruckerl et al., 2011). However, there is currently limited understanding of the health effects in children due to long term exposure to airborne particles. Schools are locations within an urban environment where children experience significant exposure to vehicle emissions, and to date there is limited information assessing children’s exposure at school. This study is a part of a large project aimed at gaining a holistic picture of the exposure of children to traffic related pollutants. In the current paper, results from the investigation of the elemental composition of airborne particle at urban schools are presented.
Resumo:
Hypoxia and the development and remodeling of blood vessels and connective tissue in granulation tissue that forms in a wound gap following full-thickness skin incision in the rat were examined as a function of time. A 1.5 cm-long incisional wound was created in rat groin skin and the opposed edges sutured together. Wounds were harvested between 3 days and 16 weeks and hypoxia, percent vascular volume, cell proliferation and apoptosis, α-smooth muscle actin, vascular endothelial growth factor-A, vascular endothelial growth factor receptor-2, and transforming growth factor-β 1 expression in granulation tissue were then assessed. Hypoxia was evident between 3 and 7 days while maximal cell proliferation at 3 days (123.6 ± 22.2 cells/mm 2, p < 0.001 when compared with normal skin) preceded the peak percent vascular volume that occurred at 7 days (15.83 ± 1.10%, p < 0.001 when compared with normal skin). The peak in cell apoptosis occurred at 3 weeks (12.1 ± 1.3 cells/mm 2, p < 0.001 when compared with normal skin). Intense α-smooth muscle actin labeling in myofibroblasts was evident at 7 and 10 days. Vascular endothelial growth factor receptor-2 and vascular endothelial growth factor-A were detectable until 2 and 3 weeks, respectively, while transforming growth factor-β 1 protein was detectable in endothelial cells and myofibroblasts until 3-4 weeks and in the extracellular matrix for 16 weeks. Incisional wound granulation tissue largely developed within 3-7 days in the presence of hypoxia. Remodeling, marked by a decline in the percent vascular volume and increased cellular apoptosis, occurred largely in the absence of detectable hypoxia. The expression of vascular endothelial growth factor-A, vascular endothelial growth factor receptor-2, and transforming growth factor-β 1 is evident prior, during, and after the peak of vascular volume reflecting multiple roles for these factors during wound healing.
Resumo:
The policy instruments that provide information on a firm's or facility's environmental performance, such as the U.S. Toxic Release Inventory (TRI) and the Pollutant Release and Transfer Register system (PRTRs) used in some European countries and Japan, play an important role in encouraging firms or facilities to improve their environmental performance, if investors, consumers and residents recognize their environmental performance. This study uses a hedonic approach to explore how the Japanese rental housing market responds to carcinogenic risk arising from releases and transfers of chemical substances produced and used at close facilities. We found that residents do not perceive carcinogenic risk generated more than 1.0 km away from their residence and that they seem to recognize the increased carcinogenic risk at distances from 0.5 km to 1.0 km away; a 1% increase in carcinogenic risk reduces the average rent by 0.0007%. The distance at which residents perceive the risk arising from such facilities is less than in previous studies. This suggests that the risk perception recognized in previous studies may capture the other externalities in addition to the chemical risk because the risk is measured by the distance.
Resumo:
Effluent from sewage treatment plants has been associated with a range of pollutant effects. Depending on the influent composition and treatment processes the effluent may contain a myriad of different chemicals which makes monitoring very complex. In this study we aimed to monitor relatively polar organic pollutant mixtures using a combination of passive sampling techniques and a set of biochemistry based assays covering acute bacterial toxicity (Microtox™), phytotoxicity (Max-I-PAM assay) and genotoxicity (umuC assay). The study showed that all of the assays were able to detect effects in the samples and allowed a comparison of the two plants as well as a comparison between the two sampling periods. Distinct improvements in water quality were observed in one of the plants as result of an upgrade to a UV disinfection system, which improved from 24× sample enrichment required to induce a 50% response in the Microtox™ assay to 84×, from 30× sample enrichment to induce a 50% reduction in photosynthetic yield to 125×, and the genotoxicity observed in the first sampling period was eliminated. Thus we propose that biochemical assay techniques in combination with time integrated passive sampling can substantially contribute to the monitoring of polar organic toxicants in STP effluents.
Resumo:
A cohort of 59 persons with industrial handling of low levels of acrylonitrile is being studied as part of a medical surveillance programme. Previously, an extended haemoglobin adduct monitoring (N-(cyanoethyl)valine and N-(hydroxyethyl)-valine) was performed regarding the glutathione transferases hGSTM1 and hGSTT1 polymorphisms but no influence of hGSTM1 or hGSTT1 polymorphisms on specific adduct levels was found. A compilation of case reports of human accidental poisonings had pointed to significant individual differences in human acrylonitrile metabolism and toxicity. Therefore, a re-evaluation of the industrial cohort included known polymorphisms of the glutathione transferases hGSTM3 and hGSTP1 as well as of the cytochrome P450 CYP2E1. A detailed statistical analysis revealed that exposed carriers of the allelic variants of hGSTP1, hGSTP1*B/hGSTP1*C, characterized by a single nucleotide polymorphism at nucleotide 313 which results in a change from Ile to Val at codon 104, had higher levels of the acrylonitrile-specific haemoglobin adduct N-(cyanoethyl)valine compared to the carriers of the codon 113 alleles hGSTP1*A and hGSTP1*D. The single nucleotide polymorphism at codon 113 of hGSTP1 (hGSTP1*A/hGSTP1*B versus hGSTP1*C/hGSTP1*D) did not show an effect, and also no influence was seen on specific haemoglobin adduct levels of the polymorphisms of hGSTM3 or CYP2E1. The data, therefore, point to a possible influence of a human enzyme polymorphism of the GSTP1 gene at codon 104 on the detoxication of acrylonitrile which calls for experimental toxicological investigation. The study also confirmed the impact of GSTT1 polymorphism on background N-(hydroxyethyl)-valine adduct levels in haemoglobin which are caused by endogenous ethylene oxide.
Resumo:
The high acute toxicity of acrylonitrile may be a result of its intrinsic biological reactivity or of its metabolite cyanide. Intravenous N-acetylcysteine has been recommended for treatment of accidental intoxications in acrylonitrile workers, but such recommendations vary internationally. Acrylonitrile is metabolized in humans and experimental animals via two competing pathways; the glutathione-dependent pathway is considered to represent an avenue of detoxication whilst the oxidative pathway leads to a genotoxic epoxide, cyanoethylene oxide, and to elimination of cyanide. Cases of acute acrylonitrile overexposure or intoxication have occurred within persons having industrial contact with acrylonitrile; the route of exposure was by inhalation and/or by skin contact. The combined observations lead to the conclusion of a much higher impact of the oxidative metabolism of acrylonitrile in humans than in rodents. This is confirmed by differences in the clinical picture of acute life-threatening intoxications in both species, as well as by differential efficacies of antidotes. A combination of N-acetylcysteine with sodium thiosulfate seems an appropriate measure for antidote therapy of acute acrylonitrile intoxications. Clinical observations also highlight the practical importance of human individual susceptibility differences. Furthermore, differential adduct monitoring, assessing protein adducts with different rates of decay, enables the development of more elaborated biological monitoring strategies for the surveillance of workers with potential acrylonitrile contact.
Resumo:
Inflammation is a fundamental component of the normal adult wound healing response occurring even in the absence of infection. It performs many beneficial roles such as the clearing of damaged cells and extracellular matrix (ECM), the removal of pathogens that might other wise multiply and spread, and the secretion of mediators that regulate other aspects of wound healing such as proliferation, re-epithelialisation and wound remodelling. Yet, excess and/or prolonged inflammation is detrimental to wound healing and leads to increased fibrosis and scarring, which can be disfiguring and, in cases such as contractures, can lead to disability. Furthermore, excessive inflammation is a major contributing factor to the persistence of chronic non-healing wounds, which are “stuck” in the inflammatory phase of healing and fail to reepithelialise. Current research suggest that the type of immune cells, their timing and the level of inflammation in a wound could have dramatic effect on whether a wound heals in a timely fashion and the final quality of the repaired tissue. Studies suggest that altering the level of inflammation might be beneficial in terms of reducing scarring and improving the rate of healing in chronic wounds. This review looks at the role of the major immune cells in normal and impaired wound healing and strategies that might be used to reduce inflammation in wounds.
Resumo:
BACKGROUND: BRAF mutations are frequent in melanoma but their prognostic significance remains unclear. OBJECTIVE: We sought to further evaluate the prognostic value of BRAF mutations in localized cutaneous melanoma. METHODS: We undertook an observational retrospective study of 147 patients with localized invasive (stages I and II) cutaneous melanomas to determine the prognostic value of BRAF mutation status. RESULTS: After a median follow-up of 48 months, patients with localized melanomas with BRAF-mutant melanomas exhibited poorer disease-free survival than those with BRAF-wt genotype (hazard ratio 2.2, 95% confidence interval 1.1-4.3) even after adjustment for Breslow thickness, tumor ulceration, location, age, sex, and tumor mitotic rate. LIMITATIONS: The retrospective design and the small number of events are limitations. CONCLUSIONS: Our findings suggest that reappraisal of clinical treatment approaches for patients with localized melanoma harboring tumors with BRAF mutation might be warranted
Resumo:
The aim of this study is to identify current knowledge gaps in fate, exposure, and toxicity of engineered nanomaterials (ENMs), highlight research gaps, and suggest future research directions. Humans and other living organisms are exposed to ENMs during production or use of products containing them. To assess the hazards of ENMs, it is important to assess their physiochemical properties and try to relate them to any observed hazard. However, the full determination of these relationships is currently limited by the lack of empirical data. Moreover, most toxicity studies do not use realistic environmental exposure conditions for determining dose-response parameters, affecting the accurate estimation of health risks associated with the exposure to ENMs. Regulatory aspects of nanotechnology are still developing and are currently the subject of much debate. Synthesis of available studies suggests a number of open questions. These include (i) developing a combination of different analytical methods for determining ENM concentration, size, shape, surface properties, and morphology in different environmental media, (ii) conducting toxicity studies using environmentally relevant exposure conditions and obtaining data relevant to developing quantitative nanostructure-toxicity relationships (QNTR), and (iii) developing guidelines for regulating exposure of ENMs in the environment.
Resumo:
Airborne organic pollutants have significant impacts on health; however their sources, atmospheric characteristics and resulting human exposures are poorly understood. This research characterized chemical composition of atmospheric volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyls in representative number of primary schools in Brisbane Metropolitan Area, quantified their concentrations, assessed their toxicity and apportioned them to their sources. The findings expand scientific knowledge of these pollutants, and will contribute towards science based management of risks associated with pollution emissions and air quality in schools and other urban and indoor environments.
Resumo:
Polycyclic Aromatic Hydrocarbons (PAHs) represent a major class of toxic pollutants because of their carcinogenic and mutagenic characteristics. People living in urban areas are regularly exposed to PAHs because of abundance of their emission sources. Within this context, this study aimed to: (i) identify and quantify the levels of ambient PAHs in an urban environment; (ii) evaluate their toxicity; and (iii) identify their sources as well as the contribution of specific sources to measured concentrations. Sixteen PAHs were identified and quantified in air samples collected from Brisbane. Principal Component Analysis – Absolute Principal Component Scores (PCA- APCS) was used in order to conduct source apportionment of the measured PAHs. Vehicular emissions, natural gas combustion, petrol emissions and evaporative/unburned fuel were the sources identified; contributing 56%, 21%, 15% and 8% of the total PAHs emissions, respectively, all of which need to be considered for any pollution control measures implemented in urban areas.
Resumo:
Thirteen common susceptibility loci have been reproducibly associated with cutaneous malignant melanoma (CMM). We report the results of an international 2-stage meta-analysis of CMM genome-wide association studies (GWAS). This meta-analysis combines 11 GWAS (5 previously unpublished) and a further three stage 2 data sets, totaling 15,990 CMM cases and 26,409 controls. Five loci not previously associated with CMM risk reached genome-wide significance (P < 5 × 10−8), as did 2 previously reported but unreplicated loci and all 13 established loci. Newly associated SNPs fall within putative melanocyte regulatory elements, and bioinformatic and expression quantitative trait locus (eQTL) data highlight candidate genes in the associated regions, including one involved in telomere biology.
Resumo:
Objective To investigate the epidemic characteristics of human cutaneous anthrax (CA) in China, detect the spatiotemporal clusters at the county level for preemptive public health interventions, and evaluate the differences in the epidemiological characteristics within and outside clusters. Methods CA cases reported during 2005–2012 from the national surveillance system were evaluated at the county level using space-time scan statistic. Comparative analysis of the epidemic characteristics within and outside identified clusters was performed using using the χ2 test or Kruskal-Wallis test. Results The group of 30–39 years had the highest incidence of CA, and the fatality rate increased with age, with persons ≥70 years showing a fatality rate of 4.04%. Seasonality analysis showed that most of CA cases occurred between May/June and September/October of each year. The primary spatiotemporal cluster contained 19 counties from June 2006 to May 2010, and it was mainly located straddling the borders of Sichuan, Gansu, and Qinghai provinces. In these high-risk areas, CA cases were predominantly found among younger, local, males, shepherds, who were living on agriculture and stockbreeding and characterized with high morbidity, low mortality and a shorter period from illness onset to diagnosis. Conclusion CA was geographically and persistently clustered in the Southwestern China during 2005–2012, with notable differences in the epidemic characteristics within and outside spatiotemporal clusters; this demonstrates the necessity for CA interventions such as enhanced surveillance, health education, mandatory and standard decontamination or disinfection procedures to be geographically targeted to the areas identified in this study.