51 resultados para crop losses


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Planar magnetic elements are becoming a replacement for their conventional rivals. Among the reasons supporting their application, is their smaller size. Taking less bulk in the electronic package is a critical advantage from the manufacturing point of view. The planar structure consists of the PCB copper tracks to generate the desired windings .The windings on each PCB layer could be connected in various ways to other winding layers to produce a series or parallel connection. These windings could be applied coreless or with a core depending on the application in Switched Mode Power Supplies (SMPS). Planar shapes of the tracks increase the effective conduction area in the windings, brings about more inductance compared to the conventional windings with the similar copper loss case. The problem arising from the planar structure of magnetic inductors is the leakage current between the layers generated by a pulse width modulated voltage across the inductor. This current value relies on the capacitive coupling between the layers, which in its turn depends on the physical parameters of the planar scheme. In order to reduce this electrical power dissipation due to the leakage current and Electromagnetic Interference (EMI), reconsideration in the planar structure might be effective. The aim of this research is to address problem of these capacitive coupling in planar layers and to find out a better structure for the planar inductance which offers less total capacitive coupling and thus less thermal dissipation from the leakage currents. Through Finite Element methods (FEM) several simulations have been carried out for various planar structures. The labs prototypes of these structures are built with the similar specification of the simulation cases. The capacitive couplings of the samples are determined with Spectrum Analyser whereby the test analysis verified the simulation results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Both sorghum (Sorghum bicolor) and sugarcane (Saccharum officinarum) are members of the Andropogoneae tribe in the Poaceae and are each other's closest relatives amongst cultivated plants. Both are relatively recent domesticates and comparatively little of the genetic potential of these taxa and their wild relatives has been captured by breeding programmes to date. This review assesses the genetic gains made by plant breeders since domestication and the progress in the characterization of genetic resources and their utilization in crop improvement for these two related species. Genetic Resources The genome of sorghum has recently been sequenced providing a great boost to our knowledge of the evolution of grass genomes and the wealth of diversity within S. bicolor taxa. Molecular analysis of the Sorghum genus has identified close relatives of S. bicolor with novel traits, endosperm structure and composition that may be used to expand the cultivated gene pool. Mutant populations (including TILLING populations) provide a useful addition to genetic resources for this species. Sugarcane is a complex polyploid with a large and variable number of copies of each gene. The wild relatives of sugarcane represent a reservoir of genetic diversity for use in sugarcane improvement. Techniques for quantitative molecular analysis of gene or allele copy number in this genetically complex crop have been developed. SNP discovery and mapping in sugarcane has been advanced by the development of high-throughput techniques for ecoTILLING in sugarcane. Genetic linkage maps of the sugarcane genome are being improved for use in breeding selection. The improvement of both sorghum and sugarcane will be accelerated by the incorporation of more diverse germplasm into the domesticated gene pools using molecular tools and the improved knowledge of these genomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents a two-stage analytical framework that integrates ecological crop (animal) growth and economic frontier production models to analyse the productive efficiency of crop (animal) production systems. The ecological crop (animal) growth model estimates "potential" output levels given the genetic characteristics of crops (animals) and the physical conditions of locations where the crops (animals) are grown (reared). The economic frontier production model estimates "best practice" production levels, taking into account economic, institutional and social factors that cause farm and spatial heterogeneity. In the first stage, both ecological crop growth and economic frontier production models are estimated to calculate three measures of productive efficiency: (1) technical efficiency, as the ratio of actual to "best practice" output levels; (2) agronomic efficiency, as the ratio of actual to "potential" output levels; and (3) agro-economic efficiency, as the ratio of "best practice" to "potential" output levels. Also in the first stage, the economic frontier production model identifies factors that determine technical efficiency. In the second stage, agro-economic efficiency is analysed econometrically in relation to economic, institutional and social factors that cause farm and spatial heterogeneity. The proposed framework has several important advantages in comparison with existing proposals. Firstly, it allows the systematic incorporation of all physical, economic, institutional and social factors that cause farm and spatial heterogeneity in analysing the productive performance of crop and animal production systems. Secondly, the location-specific physical factors are not modelled symmetrically as other economic inputs of production. Thirdly, climate change and technological advancements in crop and animal sciences can be modelled in a "forward-looking" manner. Fourthly, knowledge in agronomy and data from experimental studies can be utilised for socio-economic policy analysis. The proposed framework can be easily applied in empirical studies due to the current availability of ecological crop (animal) growth models, farm or secondary data, and econometric software packages. The article highlights several directions of empirical studies that researchers may pursue in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Networked control systems (NCSs) offer many advantages over conventional control; however, they also demonstrate challenging problems such as network-induced delay and packet losses. This paper proposes an approach of predictive compensation for simultaneous network-induced delays and packet losses. Different from the majority of existing NCS control methods, the proposed approach addresses co-design of both network and controller. It also alleviates the requirements of precise process models and full understanding of NCS network dynamics. For a series of possible sensor-to-actuator delays, the controller computes a series of corresponding redundant control values. Then, it sends out those control values in a single packet to the actuator. Once receiving the control packet, the actuator measures the actual sensor-to-actuator delay and computes the control signals from the control packet. When packet dropout occurs, the actuator utilizes past control packets to generate an appropriate control signal. The effectiveness of the approach is demonstrated through examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents a critical analysis of the current and proposed CCS legal frameworks across a number of jurisdictions in Australia in order to examine the legal treatment of the risks of carbon leakage from CCS operations. It does so through an analysis of the statutory obligations and liability rules established under the offshore Commonwealth and Victorian regimes, and onshore Queensland and Victorian legislative frameworks. Exposure draft legislation for CCS laws in Western Australia is also examined. In considering where the losses will fall in the event of leakage, the potential tortious and statutory liabilities of private operators and the State are addressed alongside the operation of statutory protections from liability. The current legal treatment of CCS under the new Australian Carbon Pricing Mechanism is also critiqued.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been substantial interest within the Australian sugar industry in product diversification as a means to reduce its exposure to fluctuating raw sugar prices and in order to increase its commercial viability. In particular, the industry is looking at fibrous residues from sugarcane harvesting (trash) and from sugarcane milling (bagasse) for cogeneration and the production of biocommodities, as these are complementary to the core process of sugar production. A means of producing surplus residue (biomass) is to process whole sugarcane crop. In this paper, the composition of different juices derived from different harvesting methods, viz. burnt cane with all trash extracted (BE), green cane with half of the trash extracted (GE), and green cane (whole sugarcane crop) with trash unextracted (GU), were investigated and the results and comparison presented. The determination of electrical conductivity, inorganic composition, and organic acids indicate that both GU and GE cane juice contain a higher proportion of soluble inorganic ions and ionisable organic acids, compared to BE cane juice. It is important to note that there are considerably higher levels of Na ions and citric acid, but relatively low P levels in the GU samples. A higher level of reducing sugars was analysed in the GU samples than the BE samples due to the higher proportion of impurities found naturally in sugarcane tops and leaves. The purity of the first expressed juice (FEJ) of GU cane was on average higher than that of FEJ of BE cane. Results also show that GU juices appear to contain higher levels of proteins and polysaccharides, with no significant difference in starch levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ratites are large, flightless birds and include the ostrich, rheas, kiwi, emu, and cassowaries, along with extinct members, such as moa and elephant birds. Previous phylogenetic analyses of complete mitochondrial genome sequences have reinforced the traditional belief that ratites are monophyletic and tinamous are their sister group. However, in these studies ratite monophyly was enforced in the analyses that modeled rate heterogeneity among variable sites. Relaxing this topological constraint results in strong support for the tinamous (which fly) nesting within ratites. Furthermore, upon reducing base compositional bias and partitioning models of sequence evolution among protein codon positions and RNA structures, the tinamou–moa clade grouped with kiwi, emu, and cassowaries to the exclusion of the successively more divergent rheas and ostrich. These relationships are consistent with recent results from a large nuclear data set, whereas our strongly supported finding of a tinamou–moa grouping further resolves palaeognath phylogeny. We infer flight to have been lost among ratites multiple times in temporally close association with the Cretaceous–Tertiary extinction event. This circumvents requirements for transient microcontinents and island chains to explain discordance between ratite phylogeny and patterns of continental breakup. Ostriches may have dispersed to Africa from Eurasia, putting in question the status of ratites as an iconic Gondwanan relict taxon. [Base composition; flightless; Gondwana; mitochondrial genome; Palaeognathae; phylogeny; ratites.]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crop simulation models have the potential to assess the risk associated with the selection of a specific N fertilizer rate, by integrating the effects of soil-crop interactions on crop growth under different pedo-climatic and management conditions. The objective of this study was to simulate the environmental and economic impact (nitrate leaching and N2O emissions) of a spatially variable N fertilizer application in an irrigated maize field in Italy. The validated SALUS model was run with 5 nitrogen rates scenarios, 50, 100, 150, 200, and 250 kg N ha−1, with the latter being the N fertilization adopted by the farmer. The long-term (25 years) simulations were performed on two previously identified spatially and temporally stable zones, a high yielding and low yielding zone. The simulation results showed that N fertilizer rate can be reduced without affecting yield and net return. The marginal net return was on average higher for the high yield zone, with values ranging from 1550 to 2650 € ha−1 for the 200 N and 1485 to 2875 € ha−1 for the 250 N. N leaching varied between 16.4 and 19.3 kg N ha−1 for the 200 N and the 250 N in the high yield zone. In the low yield zone, the 250 N had a significantly higher N leaching. N2O emissions varied between 0.28 kg N2O ha−1 for the 50 kg N ha−1 rate to a maximum of 1.41 kg N2O ha−1 for the 250 kg N ha−1 rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Little research has examined recognized pregnancy losses in a general population. Data from an Australian cohort study provide an opportunity to quantify this aspect of fecundity at a population level. METHOD: Participants in the Australian Longitudinal Study on Women's Health who were aged 28-33 years in 2006 (n = 9,145) completed up to 4 mailed surveys over 10 years. Participants were categorized according to the recognized outcome of their pregnancies, including live birth, miscarriage/stillbirth, termination/ectopic, or no pregnancy. RESULTS: At age 18-23, more women reported terminations (7%) than miscarriages (4%). By 28-33 years, the cumulative frequency of miscarriage (15%) was as common as termination (16%). For women aged 28-33 years who had ever been pregnant (n = 5,343), pregnancy outcomes were as follows: birth only (50%); loss only (18%); and birth and loss (32%), of which half (16%) were birth and miscarriage. A comparison between first miscarriage and first birth (no miscarriage) showed that most first miscarriages occurred in women aged 18-23 years who also reported a first birth at the same survey (15%). Half (51%) of all first births and first miscarriages in women aged 18-19 ended in miscarriage. Early childbearers (<28 years) often had miscarriages around the same time period as their first live birth, suggesting proactive family formation. Delayed childbearers (32-33 years) had more first births than first miscarriages. CONCLUSION: Recognized pregnancy losses are an important measure of fecundity in the general population because they indicate successful conception and maintenance of pregnancy to varying reproductive endpoints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maize streak virus (MSV; Genus Mastrevirus, Family Geminiviridae) occurs throughout Africa, where it causes what is probably the most serious viral crop disease on the continent. It is obligately transmitted by as many as six leafhopper species in the Genus Cicadulina, but mainly by C. mbila Naudé and C. storeyi. In addition to maize, it can infect over 80 other species in the Family Poaceae. Whereas 11 strains of MSV are currently known, only the MSV-A strain is known to cause economically significant streak disease in maize. Severe maize streak disease (MSD) manifests as pronounced, continuous parallel chlorotic streaks on leaves, with severe stunting of the affected plant and, usuallly, a failure to produce complete cobs or seed. Natural resistance to MSV in maize, and/or maize infections caused by non-maize-adapted MSV strains, can result in narrow, interrupted streaks and no obvious yield losses. MSV epidemiology is primarily governed by environmental influences on its vector species, resulting in erratic epidemics every 3-10 years. Even in epidemic years, disease incidences can vary from a few infected plants per field, with little associated yield loss, to 100% infection rates and complete yield loss. Taxonomy: The only virus species known to cause MSD is MSV, the type member of the Genus Mastrevirus in the Family Geminiviridae. In addition to the MSV-A strain, which causes the most severe form of streak disease in maize, 10 other MSV strains (MSV-B to MSV-K) are known to infect barley, wheat, oats, rye, sugarcane, millet and many wild, mostly annual, grass species. Seven other mastrevirus species, many with host and geographical ranges partially overlapping those of MSV, appear to infect primarily perennial grasses. Physical properties: MSV and all related grass mastreviruses have single-component, circular, single-stranded DNA genomes of approximately 2700 bases, encapsidated in 22 × 38-nm geminate particles comprising two incomplete T = 1 icosahedra, with 22 pentameric capsomers composed of a single 32-kDa capsid protein. Particles are generally stable in buffers of pH 4-8. Disease symptoms: In infected maize plants, streak disease initially manifests as minute, pale, circular spots on the lowest exposed portion of the youngest leaves. The only leaves that develop symptoms are those formed after infection, with older leaves remaining healthy. As the disease progresses, newer leaves emerge containing streaks up to several millimetres in length along the leaf veins, with primary veins being less affected than secondary or tertiary veins. The streaks are often fused laterally, appearing as narrow, broken, chlorotic stripes, which may extend over the entire length of severely affected leaves. Lesion colour generally varies from white to yellow, with some virus strains causing red pigmentation on maize leaves and abnormal shoot and flower bunching in grasses. Reduced photosynthesis and increased respiration usually lead to a reduction in leaf length and plant height; thus, maize plants infected at an early stage become severely stunted, producing undersized, misshapen cobs or giving no yield at all. Yield loss in susceptible maize is directly related to the time of infection: Infected seedlings produce no yield or are killed, whereas plants infected at later times are proportionately less affected. Disease control: Disease avoidance can be practised by only planting maize during the early season when viral inoculum loads are lowest. Leafhopper vectors can also be controlled with insecticides such as carbofuran. However, the development and use of streak-resistant cultivars is probably the most effective and economically viable means of preventing streak epidemics. Naturally occurring tolerance to MSV (meaning that, although plants become systemically infected, they do not suffer serious yield losses) has been found, which has primarily been attributed to a single gene, msv-1. However, other MSV resistance genes also exist and improved resistance has been achieved by concentrating these within individual maiz genotypes. Whereas true MSV immunity (meaning that plants cannot be symptomatically infected by the virus) has been achieved in lines that include multiple small-effect resistance genes together with msv-1, it has proven difficult to transfer this immunity into commercial maize genotypes. An alternative resistance strategy using genetic engineering is currently being investigated in South Africa. Useful websites: 〈http://www.mcb.uct.ac.za/MSV/mastrevirus.htm〉; 〈http://www. danforthcenter.org/iltab/geminiviridae/geminiaccess/mastrevirus/Mastrevirus. htm〉. © 2009 Blackwell Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Projected increases in atmospheric carbon dioxide concentration ([CO2]) and air temperature associated with future climate change are expected to affect crop development, crop yield, and, consequently, global food supplies. They are also likely to change agricultural production practices, especially those related to agricultural water management and sowing date. The magnitude of these changes and their implications to local production systems are mostly unknown. The objectives of this study were to: (i) simulate the effect of projected climate change on spring wheat (Triticum aestivum L. cv. Lang) yield and water use for the subtropical environment of the Darling Downs, Queensland, Australia; and (ii) investigate the impact of changing sowing date, as an adaptation strategy to future climate change scenarios, on wheat yield and water use. The multimodel climate projections from the IPCC Coupled Model Intercomparison Project (CMIP3) for the period 2030–2070 were used in this study. Climate scenarios included combinations of four changes in air temperature (08C, 18C, 28C, and 38C), three [CO2] levels (380 ppm, 500 ppm, and 600 ppm), and three changes in rainfall (–30%, 0%, and +20%), which were superimposed on observed station data. Crop management scenarios included a combination of six sowing dates (1 May, 10 May, 20 May, 1 June, 10 June, and 20 June) and three irrigation regimes (no irrigation (NI), deficit irrigation (DI), and full irrigation (FI)). Simulations were performed with the model DSSAT4.5, using 50 years of daily weather data.Wefound that: (1) grain yield and water-use efficiency (yield/evapotranspiration) increased linearly with [CO2]; (2) increases in [CO2] had minimal impact on evapotranspiration; (3) yield increased with increasing temperature for the irrigated scenarios (DI and FI), but decreased for the NI scenario; (4) yield increased with earlier sowing dates; and (5) changes in rainfall had a small impact on yield for DI and FI, but a high impact for the NI scenario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Aims: Irrigation management affects soil water dynamics as well as the soil microbial carbon and nitrogen turnover and potentially the biosphere-atmosphere exchange of greenhouse gasses (GHG). We present a study on the effect of three irrigation treatments on the emissions of nitrous oxide (N2O) from irrigated wheat on black vertisols in South-Eastern Queensland, Australia. Methods: Soil N2O fluxes from wheat were monitored over one season with a fully automated system that measured emissions on a sub-daily basis. Measurements were taken from 3 subplots for each treatment within a randomized split-plot design. Results: Highest N2O emissions occurred after rainfall or irrigation and the amount of irrigation water applied was found to influence the magnitude of these “emission pulses”. Daily N2O emissions varied from -0.74 to 20.46 g N2O-N ha-1 day-1 resulting in seasonal losses ranging from 0.43 to 0.75 kg N2O N ha-1 season -1 for the different irrigation treatments. Emission factors (EF = proportion of N fertilizer emitted as N2O) over the wheat cropping season, uncorrected for background emissions, ranged from 0.2 to 0.4% of total N applied for the different treatments. Highest seasonal N2O emissions were observed in the treatment with the highest irrigation intensity; however, the N2O intensity (N2O emission per crop yield) was highest in the treatment with the lowest irrigation intensity. Conclusions: Our data suggest that timing and amount of irrigation can effectively be used to reduce N2O losses from irrigated agricultural systems; however, in order to develop sustainable mitigation strategies the N2O intensity of a cropping system is an important concept that needs to be taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent literature has argued that environmental efficiency (EE), which is built on the materials balance (MB) principle, is more suitable than other EE measures in situations where the law of mass conversation regulates production processes. In addition, the MB-based EE method is particularly useful in analysing possible trade-offs between cost and environmental performance. Identifying determinants of MB-based EE can provide useful information to decision makers but there are very few empirical investigations into this issue. This article proposes the use of data envelopment analysis and stochastic frontier analysis techniques to analyse variation in MB-based EE. Specifically, the article develops a stochastic nutrient frontier and nutrient inefficiency model to analyse determinants of MB-based EE. The empirical study applies both techniques to investigate MB-based EE of 96 rice farms in South Korea. The size of land, fertiliser consumption intensity, cost allocative efficiency, and the share of owned land out of total land are found to be correlated with MB-based EE. The results confirm the presence of a trade-off between MB-based EE and cost allocative efficiency and this finding, favouring policy interventions to help farms simultaneously achieve cost efficiency and MP-based EE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the sugar industry, processing juice derived from the whole sugar cane plant adversely affects the yield and quality of the product sugar. Dr Thai investigated the aggregation behaviour of sugar cane juice particles and developed strategies to improve the removal of non-sucrose impurities.