35 resultados para cracking
Resumo:
Shrinkage cracking is commonly observed in concrete flat structures such as highway pavements, slabs, and bridge decks. Crack spacing due to shrinkage has received considerable attention for many years [1-3]. However, some aspects concerning the mechanism of crack spacing still remain un-clear. Though it is well known that the interval of the cracks generally falls with a range, no satisfactory explanation has been put forward as to why the minimum spacing exists.
Resumo:
There has been a worldwide trend to increase axle loads and train speeds. This means that railway track degradation will be accelerated, and track maintenance costs will be increased significantly. There is a need to investigate the consequences of increasing traffic load. The aim of the research is to develop a model for the analysis of physical degradation of railway tracks in response to changes in traffic parameters, especially increased axle loads and train speeds. This research has developed an integrated track degradation model (ITDM) by integrating several models into a comprehensive framework. Mechanistic relationships for track degradation hav~ ?een used wherever possible in each of the models contained in ITDM. This overcc:mes the deficiency of the traditional statistical track models which rely heavily on historical degradation data, which is generally not available in many railway systems. In addition statistical models lack the flexibility of incorporating future changes in traffic patterns or maintenance practices. The research starts with reviewing railway track related studies both in Australia and overseas to develop a comprehensive understanding of track performance under various traffic conditions. Existing railway related models are then examined for their suitability for track degradation analysis for Australian situations. The ITDM model is subsequently developed by modifying suitable existing models, and developing new models where necessary. The ITDM model contains four interrelated submodels for rails, sleepers, ballast and subgrade, and track modulus. The rail submodel is for rail wear analysis and is developed from a theoretical concept. The sleeper submodel is for timber sleepers damage prediction. The submodel is developed by modifying and extending an existing model developed elsewhere. The submodel has also incorporated an analysis for the likelihood of concrete sleeper cracking. The ballast and subgrade submodel is evolved from a concept developed in the USA. Substantial modifications and improvements have been made. The track modulus submodel is developed from a conceptual method. Corrections for more global track conditions have been made. The integration of these submodels into one comprehensive package has enabled the interaction between individual track components to be taken into account. This is done by calculating wheel load distribution with time and updating track conditions periodically in the process of track degradation simulation. A Windows-based computer program ~ssociated with ITDM has also been developed. The program enables the user to carry out analysis of degradation of individual track components and to investigate the inter relationships between these track components and their deterioration. The successful implementation of this research has provided essential information for prediction of increased maintenance as a consequence of railway trackdegradation. The model, having been presented at various conferences and seminars, has attracted wide interest. It is anticipated that the model will be put into practical use among Australian railways, enabling track maintenance planning to be optimized and potentially saving Australian railway systems millions of dollars in operating costs.
Resumo:
This paper presents a material model to simulate load induced cracking in Reinforced Concrete (RC) elements in ABAQUS finite element package. Two numerical material models are used and combined to simulate complete stress-strain behaviour of concrete under compression and tension including damage properties. Both numerical techniques used in the present material model are capable of developing the stress-strain curves including strain softening regimes only using ultimate compressive strength of concrete, which is easily and practically obtainable for many of the existing RC structures or those to be built. Therefore, the method proposed in this paper is valuable in assessing existing RC structures in the absence of more detailed test results. The numerical models are slightly modified from the original versions to be comparable with the damaged plasticity model used in ABAQUS. The model is validated using different experiment results for RC beam elements presented in the literature. The results indicate a good agreement with load vs. displacement curve and observed crack patterns.
Resumo:
Initial crack widely exists in the welded members of steel bridge induced by the welding procedure or by the fatigue damage crack initiation. The behavior of crack growth with a view to fatigue damage accumulation on the tip of cracks is discussed. Fatigue life of welded components with initial crack in bridges under traffic loading is investigated. Based on existing fatigue experiment results of welded members with initial crack and the fatigue experiment results of welded bridge members under constant stress cycles, the crack would keep semi-elliptical shape with variable ratio of a/c during the crack propagation. Based on the concept of continuum damage accumulated on the tip of fatigue cracks,the fatigue damage law suitable for steel bridge members under traffic loading is modified to consider the crack growth.The virtual crack growth method and the semi-elliptical crack shape assumption are proposed in this paper to deduce a new model of fatigue crack growth rate for welded bridge members under traffic loading. And the calculated method of the stress intensity factor necessary for evaluation of the fatigue life of welded bridge members with cracks is discussed.The proposed fatigue crack growth model is then applied to calculate the crack growth and the fatigue life of existing welded members with fatigue experimental results. The fatigue crack propagation computation results show that the ratio of crack depth to the half crack surface length a/c is variable during crack propagation process and the stress cycle increases with the increase of a0/c0 with certain a0/t0 .The calculated and measured fatigue lives are generally in good agreement,at some initial conditions of cracking, for welded members widely used in steel bridges.
Resumo:
The effectiveness of a repair work for the restoration of spalled reinforced concrete (r.c.) structures depends to a great extent, on their ability to restore the structural integrity of the r.c. element, to restore its serviceability and to protect the reinforcements from further deterioration. This paper presents results of a study concocted to investigate the structural performance of eight spalled r.c. beams repaired using two advanced repair materials in various zones for comparison purposes, namely a free flowing self compacting mortar (FFSCM) and a polymer Modified cementitious mortar (PMCM). The repair technique adopted was that for the repair of spalled concrete in which the bond between the concrete and steel was completely lost due to reinforcement corrosion or the effect of fire or impact. The beams used for the experiment were first cast, then hacked at various zones before they were repaired except for the control beam. The beam specimens were then loaded to failure under four point loadings. The structural response of each beam was evaluated in terms of first crack load, cracking behavior, crack pattern, deflection, variation of strains in the concrete and steel, collapse load and the modes of failure. The results of the test showed that, the repair materials applied on the various zones of the beams were able to restore more than 100% of the beams’ capacity and that FFSCM gave a better overall performance.
Resumo:
Catalytic CO2 reforming of biomass tar on palygorskite-supported nickel catalysts using toluene as a model compound of biomass tar was investigated. The experiments were performed in a bench scale installation a fixed bed reactor. All experiments were carried out at 650, 750, 800 °C and atmospheric pressure. The effect of Ni loading, reaction temperature and concentration of CO2 on H2 yield and carbon deposit was investigated. Ni/Palygorskite (Ni/PG) catalysts with Ni/PG ratios of 0%, 2%, 5% and 8% were tested, the last two show the best performance. H2 yield and carbon deposit diminished with the increase of reaction temperature, Ni loading, and CO2 concentration.
Resumo:
Damage assessment (damage detection, localization and quantification) in structures and appropriate retrofitting will enable the safe and efficient function of the structures. In this context, many Vibration Based Damage Identification Techniques (VBDIT) have emerged with potential for accurate damage assessment. VBDITs have achieved significant research interest in recent years, mainly due to their non-destructive nature and ability to assess inaccessible and invisible damage locations. Damage Index (DI) methods are also vibration based, but they are not based on the structural model. DI methods are fast and inexpensive compared to the model-based methods and have the ability to automate the damage detection process. DI method analyses the change in vibration response of the structure between two states so that the damage can be identified. Extensive research has been carried out to apply the DI method to assess damage in steel structures. Comparatively, there has been very little research interest in the use of DI methods to assess damage in Reinforced Concrete (RC) structures due to the complexity of simulating the predominant damage type, the flexural crack. Flexural cracks in RC beams distribute non- linearly and propagate along all directions. Secondary cracks extend more rapidly along the longitudinal and transverse directions of a RC structure than propagation of existing cracks in the depth direction due to stress distribution caused by the tensile reinforcement. Simplified damage simulation techniques (such as reductions in the modulus or section depth or use of rotational spring elements) that have been extensively used with research on steel structures, cannot be applied to simulate flexural cracks in RC elements. This highlights a big gap in knowledge and as a consequence VBDITs have not been successfully applied to damage assessment in RC structures. This research will address the above gap in knowledge and will develop and apply a modal strain energy based DI method to assess damage in RC flexural members. Firstly, this research evaluated different damage simulation techniques and recommended an appropriate technique to simulate the post cracking behaviour of RC structures. The ABAQUS finite element package was used throughout the study with properly validated material models. The damaged plasticity model was recommended as the method which can correctly simulate the post cracking behaviour of RC structures and was used in the rest of this study. Four different forms of Modal Strain Energy based Damage Indices (MSEDIs) were proposed to improve the damage assessment capability by minimising the numbers and intensities of false alarms. The developed MSEDIs were then used to automate the damage detection process by incorporating programmable algorithms. The developed algorithms have the ability to identify common issues associated with the vibration properties such as mode shifting and phase change. To minimise the effect of noise on the DI calculation process, this research proposed a sequential order of curve fitting technique. Finally, a statistical based damage assessment scheme was proposed to enhance the reliability of the damage assessment results. The proposed techniques were applied to locate damage in RC beams and slabs on girder bridge model to demonstrate their accuracy and efficiency. The outcomes of this research will make a significant contribution to the technical knowledge of VBDIT and will enhance the accuracy of damage assessment in RC structures. The application of the research findings to RC flexural members will enable their safe and efficient performance.
Resumo:
Proper functioning of Insulated Rail Joints (IRJs) is essential for the safe operation of the railway signalling systems and broken rail identification circuitries. The Conventional IRJ (CIRJ) resembles structural butt joints consisting of two pieces of rails connected together through two joint bars on either side of their web and the assembly is held together through pre-tensioned bolts. As the IRJs should maintain electrical insulation between the two rails, a gap between the rail ends must be retained at all times and all metal contacting surfaces should be electrically isolated from each other using non-conductive material. At the gap, the rail ends lose longitudinal continuity and hence the vertical sections of the rail ends are often severely damaged, especially at the railhead, due to the passage of wheels compared to other continuously welded rail sections. Fundamentally, the reason for the severe damage can be related to the singularities of the wheel-rail contact pressure and the railhead stress. No new generation designs that have emerged in the market to date have focussed on this fundamental; they only have provided attention to either the higher strength materials or the thickness of the sections of various components of the IRJs. In this thesis a novel method of shape optimisation of the railhead is developed to eliminate the pressure and stress singularities through changes to the original sharp corner shaped railhead into an arc profile in the longitudinal direction. The optimal shape of the longitudinal railhead profile has been determined using three nongradient methods in search of accuracy and efficiency: (1) Grid Search Method; (2) Genetic Algorithm Method and (3) Hybrid Genetic Algorithm Method. All these methods have been coupled with a parametric finite element formulation for the evaluation of the objective function for each iteration or generation depending on the search algorithm employed. The optimal shape derived from these optimisation methods is termed as Stress Minimised Railhead (SMRH) in this thesis. This optimal SMRH design has exhibited significantly reduced stress concentration that remains well below the yield strength of the head hardened rail steels and has shifted the stress concentration location away from the critical zone of the railhead end. The reduction in the magnitude and the relocation of the stress concentration in the SMRH design has been validated through a full scale wheel – railhead interaction test rig; Railhead strains under the loaded wheels have been recorded using a non-contact digital image correlation method. Experimental study has confirmed the accuracy of the numerical predications. Although the SMRH shaped IRJs eliminate stress singularities, they can still fail due to joint bar or bolt hole cracking; therefore, another conceptual design, termed as Embedded IRJ (EIRJ) in this thesis, with no joint bars and pre-tensioned bolts has been developed using a multi-objective optimisation formulation based on the coupled genetic algorithm – parametric finite element method. To achieve the required structural stiffness for the safe passage of the loaded wheels, the rails were embedded into the concrete of the post tensioned sleepers; the optimal solutions for the design of the EIRJ is shown to simplify the design through the elimination of the complex interactions and failure modes of the various structural components of the CIRJ. The practical applicability of the optimal shapes SMRH and EIRJ is demonstrated through two illustrative examples, termed as improved designs (IMD1 & IMD2) in this thesis; IMD1 is a combination of the CIRJ and the SMRH designs, whilst IMD2 is a combination of the EIRJ and SMRH designs. These two improved designs have been simulated for two key operating (speed and wagon load) and design (wheel diameter) parameters that affect the wheel-rail contact; the effect of these parameters has been found to be negligible to the performance of the two improved designs and the improved designs are in turn found far superior to the current designs of the CIRJs in terms of stress singularities and deformation under the passage of the loaded wheels. Therefore, these improved designs are expected to provide longer service life in relation to the CIRJs.
Resumo:
Low cycle fatigue cracking of light gauge metal roofing was investigated by testing a number of two-span corrugated roofing assemblies with different spans and fastening systems under cyclic uplift wind loading. Fatigue results correlated quite well with the corresponding static results reported earlier, and revealed the dependence of fatigue behaviour on the fastening system used. A comparison was made of one fastening system with the other regarding fatigue performance .
Resumo:
Biomass tar restricts the wide application and development of biomass gasification technology. In the present paper, palygorskite, a natural magnesium-containing clay mineral, was investigated for catalytic pyrolysis of rape straw in situ and compared with the dolomite researched widely. The two types of natural minerals were characterized with XRD and BET. The results showed that combustible gas derived from the pyrolysis increased with an increase in gasification temperature. The Hconversion and Cconversion increased to 44.7% and 31% for the addition of palygorskite and increased to 41.3% and 31.3% for the addition of dolomite at the gasification temperature of 800 °C, compared with 15.1% and 5.6% without addition of the two types of material. It indicated that more biomass was converted into combustible gases implying the decrease in biomass tar under the function of palygorskite or dolomite and palygorskite had a slightly better efficiency than that of dolomite in the experimental conditions.
Resumo:
Introduction Cybercrime consists of any criminal action or behaviour that is committed through the use of Information Technology. Common examples of such activities include cyber hacking, identity theft, cracking, spamming, social engineering, data tampering, online fraud, programming attacks, etc. The pervasive use of the internet clearly indicates that the impacts of cybercrime is far reaching and any one, may it be a person or an entity can be a victim of cybercriminal activities. Recently in the US, eight members of a global cybercrime ring were charged in one of the biggest ever bank heists. The cybercrime gang allegedly stole US$45 million by hacking into credit card processing firms and withdrawing money from ATMs in 27 countries (Jessica et al. 2013). An extreme example, the above case highlights how IT is changing the way crimes are being committed. No longer do criminals use masks, guns and get-a-way cars, criminals are able to commit crimes in the comfort of their homes, millions of miles from the scene of the crime and can access significant sums of money that can financially cripple organisations. The world is taking notice of this growing threat and organisations in the Pacific must also be proactive in tackling this emerging issue.
Resumo:
We propose a new kind of asymmetric mutual authentication from passwords with stronger privacy against malicious servers, lest they be tempted to engage in “cross-site user impersonation” to each other. It enables a person to authenticate (with) arbitrarily many independent servers, over adversarial channels, using a memorable and reusable single short password. Beside the usual PAKE security guarantees, our framework goes to lengths to secure the password against brute-force cracking from privileged server information.
Resumo:
While the philosophical motivation behind Civil Infrastructure Management Systems is to achieve optimal level of service at a minimum cost, the allocation of scarce resources among competing alternatives is still a matter of debate. It appears to be widely accepted that results from tradeoff analysis can be measured by the degree of accomplishment of the objectives. Road management systems not only deal with different asset types but also with conflicting objectives. This paper presents a case study of lifecycle optimization with tradeoff analysis for a road corridor in New Brunswick. Objectives of the study included condition of bridge and roads and road safety. A road safety index was created based on potential for improvement. Road condition was based on roughness, rutting and cracking. Initial results show lack of sustainability in bridge performance. Therefore, bridges where broken by components: deck, superstructure and substructure. Visual inspections, in addition to construction age of each bridge, were combined to generate a surrogate apparent age. Two life cycle analysis were conducted; one aimed to minimize overall cost while achieving sustainable results and another one purely for optimization. -used to identify required levels of budget. Such analyses were used to identify the minimum required budget and to demonstrate that with the same amount of money it was possible to achieve better levels of performance. Dominance and performance driven criteria were combined to identify and select an optimal result. It was found that achievement of optimally sustained results is conditioned by the availability of treatments for all asset classes at across their life spans. For the case study a disaggregated bridge condition index was introduced to the original algorithm to attempt to achieve sustainability in all bridges components, however lack of early stage treatments for substructures produce declining trends for such a component.
Resumo:
During high wind events, crest-fixed profiled steel roof claddings in low-rise buildings can be subjected to combined cyclic wind uplift and in-plane racking (shear) forces. Static and cyclic tests of corrugated steel roof claddings were carried out to investigate the effect of in-plane racking force on the uplift strength, in particular, in relation to the fatigue cracking commonly observed under cyclic wind uplift. The presence of racking force appeared to have insignificant effect on the static and cyclic wind uplift strength. It may therefore be possible to include the diaphragm strength of these claddings in the design of low-rise buildings in a similar manner to valley-fixed claddings. This may lead to a reduction in bracing requirements.