30 resultados para atomic clock


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the implementation of the first portable, embedded data acquisition unit (BabelFuse) that is able to acquire and timestamp generic sensor data and trigger General Purpose I/O (GPIO) events against a microsecond-accurate wirelessly-distributed ‘global’ clock. A significant issue encountered when fusing data received from multiple sensors is the accuracy of the timestamp associated with each piece of data. This is particularly important in applications such as Simultaneous Localisation and Mapping (SLAM) where vehicle velocity forms an important part of the mapping algorithms; on fast-moving vehicles, even millisecond inconsistencies in data timestamping can produce errors which need to be compensated for. The timestamping problem is compounded in a robot swarm environment especially if non-deterministic communication hardware (such as IEEE-802.11-based wireless) and inaccurate clock synchronisation protocols are used. The issue of differing timebases makes correlation of data difficult and prevents the units from reliably performing synchronised operations or manoeuvres. By utilising hardware-assisted timestamping, clock synchronisation protocols based on industry standards and firmware designed to minimise indeterminism, an embedded data acquisition unit capable of microsecond-level clock synchronisation is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work experimentally examines the performance benefits of a regional CORS network to the GPS orbit and clock solutions for supporting real-time Precise Point Positioning (PPP). The regionally enhanced GPS precise orbit solutions are derived from a global evenly distributed CORS network added with a densely distributed network in Australia and New Zealand. A series of computational schemes for different network configurations are adopted in the GAMIT-GLOBK and PANDA data processing. The precise GPS orbit results show that the regionally enhanced solutions achieve the overall orbit improvements with respect to the solutions derived from the global network only. Additionally, the orbital differences over GPS satellite arcs that are visible by any of the five Australia-wide CORS stations show a higher percentage of overall improvements compared to the satellite arcs that are not visible from these stations. The regional GPS clock and Uncalibrated Phase Delay (UPD) products are derived using the PANDA real time processing module from Australian CORS networks of 35 and 79 stations respectively. Analysis of PANDA kinematic PPP and kinematic PPP-AR solutions show certain overall improvements in the positioning performance from a denser network configuration after solution convergence. However, the clock and UPD enhancement on kinematic PPP solutions is marginal. It is suggested that other factors, such as effects of ionosphere, incorrectly fixed ambiguities, may be the more dominating, deserving further research attentions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ab initio Density Functional Theory (DFT) calculations are performed to study the diffusion of atomic hydrogen on a Mg(0001) surface and their migration into the subsurface layers. A carbon atom located initially on a Mg(0001) surface can migrate into the sub-surface layer and occupy a fcc site, with charge transfer to the C atom from neighboring Mg atoms. The cluster of postively charged Mg atoms surrounding a sub-surface C is then shown to facilitate the dissociative chemisorption of molecular hydrogen on the Mg(0001) surface, and the surface migration and subsequent diffusion into the subsurface of atomic hydrogen. This helps rationalize the experimentally-observed improvement in absorption kinetics of H2 when graphite or single walled carbon nanotubes (SWCNT) are introduced into the Mg powder during ball milling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact induced chemisorption of hydrocarbon molecules (CH3 and CH2) on H-terminated diamond (001)-(2x1) surface was investigated by molecular dynamics simulation using the many-body Brenner potential. The deposition dynamics of the CH3 radical at impact energies of 0.1-50 eV per molecule was studied and the energy threshold for chemisorption was calculated. The impact-induced decomposition of hydrogen atoms and the dimer opening mechanism on the surface was investigated. Furthermore, the probability for dimer opening event induced by chemisorption of CH, was simulated by randomly varying the impact position as well as the orientation of the molecule relative to the surface. Finally, the energetic hydrocarbons were modeled, slowing down one after the other to simulate the initial fabrication of diamond-like carbon (DLC) films. The structure characteristic in synthesized films with different hydrogen flux was studied. Our results indicate that CH3, CH2 and H are highly reactive and important species in diamond growth. Especially, the fraction of C-atoms in the film having sp(3) hybridization will be enhanced in the presence of H atoms, which is in good agreement with experimental observations. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study demonstrates a novel technique of preparing drug colloid probes to determine the adhesion force between the drug salbutamol sulphate (SS) and the surfaces of polymer microparticles to be used as carriers for the dispersion of drug particles from a dry powder inhaler (DPI) formulation. Initially model silica probes of approximately 4 μm size, similar to a drug particle used in DPI formulations, were coated with a saturated SS solution with the aid of capillary forces acting between the silica probe and the drug solution. The developed method of ensuring a smooth and uniform layer of SS on the silica probe was validated using X-Ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM). Using the same technique, silica microspheres preattached on the AFM cantilever were coated with SS. The adhesion forces between the silica probe and drug coated silica (drug probe) and polymer surfaces (hydrophilic and hydrophobic) were determined. Our experimental results showed that the technique for preparing the drug probe was robust and can be used to determine the adhesion force between hydrophilic/hydrophobic drug probe and carrier surfaces to gain a better understanding on drug carrier adhesion forces in DPI formulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precise clock synchronization is essential in emerging time-critical distributed control systems operating over computer networks where the clock synchronization requirements are mostly focused on relative clock synchronization and high synchronization precision. Existing clock synchronization techniques such as the Network Time Protocol (NTP) and the IEEE 1588 standard can be difficult to apply to such systems because of the highly precise hardware clocks required, due to network congestion caused by a high frequency of synchronization message transmissions, and high overheads. In response, we present a Time Stamp Counter based precise Relative Clock Synchronization Protocol (TSC-RCSP) for distributed control applications operating over local-area networks (LANs). In our protocol a software clock based on the TSC register, counting CPU cycles, is adopted in the time clients and server. TSC-based clocks offer clients a precise, stable and low-cost clock synchronization solution. Experimental results show that clock precision in the order of 10~microseconds can be achieved in small-scale LAN systems. Such clock precision is much higher than that of a processor's Time-Of-Day clock, and is easily sufficient for most distributed real-time control applications over LANs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of single-walled carbon nanotubes (SWCNTs) in plasma-enhanced chemical vapor deposition (PECVD) is studied using a surface diffusion model. It is shown that at low substrate temperatures (≤1000 K), the atomic hydrogen and ion fluxes from the plasma can strongly affect nanotube growth. The ion-induced hydrocarbon dissociation can be the main process that supplies carbon atoms for SWCNT growth and is responsible for the frequently reported higher (compared to thermal chemical vapor deposition) nanotube growth rates in plasma-based processes. On the other hand, excessive deposition of plasma ions and atomic hydrogen can reduce the diffusion length of the carbon-bearing species and their residence time on the nanotube lateral surfaces. This reduction can adversely affect the nanotube growth rates. The results here are in good agreement with the available experimental data and can be used for optimizing SWCNT growth in PECVD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The means of reducing nanoparticle contamination in the synthesis of carbon nanostructures in reactive Ar + H2 + CH4 plasmas are studied. It is shown that by combining the electrostatic filtering and thermophoretic manipulation of nanoparticles, one can significantly improve the quality of carbon nanopatterns. By increasing the substrate heating power, one can increase the size of deposited nanoparticles and eventually achieve nanoparticle-free nanoassemblies. This approach is generic and is applicable to other reactive plasma-aided nanofabrication processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to determine the strain-rate-dependent mechanical behavior of living and fixed osteocytes and chondrocytes, in vitro. Firstly, Atomic Force Microscopy (AFM) was used to obtain the force-indentation curves of these single cells at four different strain-rates. These results were then employed in inverse finite element analysis (FEA) using Modified Standard neo-Hookean Solid (MSnHS) idealization of these cells to determine their mechanical properties. In addition, a FEA model with a newly developed spring element was employed to accurately simulate AFM evaluation in this study. We report that both cytoskeleton (CSK) and intracellular fluid govern the strain-rate-dependent mechanical property of living cells whereas intracellular fluid plays a predominant role on fixed cells’ behavior. In addition, through the comparisons, it can be concluded that osteocytes are stiffer than chondrocytes at all strain-rates tested indicating that the cells could be the biomarker of their tissue origin. Finally, we report that MSnHS is able to capture the strain-rate-dependent mechanical behavior of osteocyte and chondrocyte for both living and fixed cells. Therefore, we concluded that the MSnHS is a good model for exploration of mechanical deformation responses of single osteocytes and chondrocytes. This study could open a new avenue for analysis of mechanical behavior of osteocytes and chondrocytes as well as other similar types of cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study demonstrates a novel technique of preparing drug colloid probes to determine the adhesion force between a model drug salbutamol sulphate (SS) and the surfaces of polymer microparticles to be used as carriers for the dispersion of drug particles from dry powder inhaler (DPI) formulations. Model silica probes of approximately 4 lm size, similar to a drug particle used in DPI formulations, were coated with a saturated SS solution with the aid of capillary forces acting between the silica probe and the drug solution. The developed method of ensuring a smooth and uniform layer of SS on the silica probe was validated using X-ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM). Using the same technique, silica microspheres pre-attached on the AFM cantilever were coated with SS. The adhesion forces between the silica probe and drug coated silica (drug probe) and polymer surfaces (hydrophilic and hydrophobic) were determined. Our experimental results showed that the technique for preparing the drug probe was robust and can be used to determine the adhesion force between hydrophilic/ hydrophobic drug probe and carrier surfaces to gain a better understanding on drug carrier adhesion forces in DPI formulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Models of the mammalian clock have traditionally been based around two feedback loops-the self-repression of Per/Cry by interfering with activation by BMAL/CLOCK, and the repression of Bmal/Clock by the REV-ERB proteins. Recent experimental evidence suggests that the D-box, a transcription factor binding site associated with daytime expression, plays a larger role in clock function than has previously been understood. We present a simplified clock model that highlights the role of the D-box and illustrate an approach for finding maximum-entropy ensembles of model parameters, given experimentally imposed constraints. Parameter variability can be mitigated using prior probability distributions derived from genome-wide studies of cellular kinetics. Our model reproduces predictions concerning the dual regulation of Cry1 by the D-box and Rev-ErbA/ROR response element (RRE) promoter elements and allows for ensemble-based predictions of phase response curves (PRCs). Nonphotic signals such as Neuropeptide Y (NPY) may act by promoting Cry1 expression, whereas photic signals likely act by stimulating expression from the E/E' box. Ensemble generation with parameter probability restraints reveals more about a model's behavior than a single optimal parameter set.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precise satellite orbit and clocks are essential for providing high accuracy real-time PPP (Precise Point Positioning) service. However, by treating the predicted orbits as fixed, the orbital errors may be partially assimilated by the estimated satellite clock and hence impact the positioning solutions. This paper presents the impact analysis of errors in radial and tangential orbital components on the estimation of satellite clocks and PPP through theoretical study and experimental evaluation. The relationship between the compensation of the orbital errors by the satellite clocks and the satellite-station geometry is discussed in details. Based on the satellite clocks estimated with regional station networks of different sizes (∼100, ∼300, ∼500 and ∼700 km in radius), results indicated that the orbital errors compensated by the satellite clock estimates reduce as the size of the network increases. An interesting regional PPP mode based on the broadcast ephemeris and the corresponding estimated satellite clocks is proposed and evaluated through the numerical study. The impact of orbital errors in the broadcast ephemeris has shown to be negligible for PPP users in a regional network of a radius of ∼300 km, with positioning RMS of about 1.4, 1.4 and 3.7 cm for east, north and up component in the post-mission kinematic mode, comparable with 1.3, 1.3 and 3.6 cm using the precise orbits and the corresponding estimated clocks. Compared with the DGPS and RTK positioning, only the estimated satellite clocks are needed to be disseminated to PPP users for this approach. It can significantly alleviate the communication burdens and therefore can be beneficial to the real time applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ba(6-3x)Nd(8+2x)Ti(18)O(54) (BNTl14) is a high permittivity dielectric with low temperature coefficient (Tcf). Low coefficient of change of dielectric permittivity with temperature (Tcf) is an unusual materials property. The research is aimed at discovering how atomic structure relates to temperature coefficient. Sub-Ångström scanning transmission electron microscopy (STEM) is used to measure mixed occupancy of Nd and Ba in atomic columns. It was expected that phase separation would occur to accommodate mixing of dissimilar ions. However no evidence of phase separation was found. There is a good image match between experiment and high angle annular dark field (HAADF) simulation. Vacancies and excess Ba ions appear to be randomly arranged on the available sites which would result in distortion of TiO6 octahedra. The low Tcf may arise from TiO6 distortion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An "atomic layer-by-layer" structure of Co3O4/graphene is developed as an anode material for lithium-ion batteries. Due to the atomic thickness of both the Co3O4 nanosheets and the graphene, the composite exhibits an ultrahigh specific capacity of 1134.4 mAh g-1 and an ultralong life up to 2000 cycles at 2.25 C, far beyond the performances of previously reported Co3O4/C composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An amorphous silicon carbonitride (Si1-x-yCxN y, x = 0:43, y = 0:31) coating was deposited on polyimide substrate using the magnetron-sputtering method. Exposure tests of the coated polyimide in atomic oxygen beam and vacuum ultraviolet radiation were performed in a ground-based simulator. Erosion kinetics measurements indicated that the erosion yield of the Si0.26C0.43N0.31 coating was about 1.5x and 1.8 × 10-26 cm3 /atom during exposure in single atomic oxygen beam, simultaneous atomic oxygen beam, and vacuum ultraviolet radiation, respectively. These values were 2 orders of magnitude lower than that of bare polyimide substrate. Scanning electron and atomic force microscopy, X-ray photoelectron spectrometer, and Fourier transformed infrared spectroscopy investigation indicated that during exposures, an oxide-rich layer composed of SiO2 and minor Si-C-O formed on the surface of the Si 0.26C0.43N0.31 coating, which was the main reason for the excellent resistance to the attacks of atomic oxygen. Moreover, vacuum ultraviolet radiation could promote the breakage of chemical bonds with low binding energy, such as C-N, C = N, and C-C, and enhance atomic oxygen erosion rate slightly.