209 resultados para anther walls
Resumo:
Partially grouted wider reinforced masonry wall, built predominantly using face shell bedded hollow concrete blocks, is an economical structural system and is popularly used in the cyclonic areas; its out-of-plane response to lateral loading is well understood, unfortunately its inplane shear behaviour is less well understood as to the effect of partial gouting in intervening the load paths within the wall. For rational analysis of the wall clarification is sought as to whether the wall acts as a composite of unreinforced panels and reinforced cores or as a continuum of masonry embedded with reinforced at wider spacing. This paper reports the results of four full scale walls tested under inplane cyclic shear loading to provide some insight into the effect of the grout cores in altering the load paths within the wall. The global lateral load - lateral deflection hysteric curves as well as local responses of some critical zones of the shear walls are presented.
Resumo:
Concrete is commonly used as a primary construction material for tall building construction. Load bearing components such as columns and walls in concrete buildings are subjected to instantaneous and long term axial shortening caused by the time dependent effects of "shrinkage", "creep" and "elastic" deformations. Reinforcing steel content, variable concrete modulus, volume to surface area ratio of the elements and environmental conditions govern axial shortening. The impact of differential axial shortening among columns and core shear walls escalate with increasing building height. Differential axial shortening of gravity loaded elements in geometrically complex and irregular buildings result in permanent distortion and deflection of the structural frame which have a significant impact on building envelopes, building services, secondary systems and the life time serviceability and performance of a building. Existing numerical methods commonly used in design to quantify axial shortening are mainly based on elastic analytical techniques and therefore unable to capture the complexity of non-linear time dependent effect. Ambient measurements of axial shortening using vibrating wire, external mechanical strain, and electronic strain gauges are methods that are available to verify pre-estimated values from the design stage. Installing these gauges permanently embedded in or on the surface of concrete components for continuous measurements during and after construction with adequate protection is uneconomical, inconvenient and unreliable. Therefore such methods are rarely if ever used in actual practice of building construction. This research project has developed a rigorous numerical procedure that encompasses linear and non-linear time dependent phenomena for prediction of axial shortening of reinforced concrete structural components at design stage. This procedure takes into consideration (i) construction sequence, (ii) time varying values of Young's Modulus of reinforced concrete and (iii) creep and shrinkage models that account for variability resulting from environmental effects. The capabilities of the procedure are illustrated through examples. In order to update previous predictions of axial shortening during the construction and service stages of the building, this research has also developed a vibration based procedure using ambient measurements. This procedure takes into consideration the changes in vibration characteristic of structure during and after construction. The application of this procedure is illustrated through numerical examples which also highlight the features. The vibration based procedure can also be used as a tool to assess structural health/performance of key structural components in the building during construction and service life.
Resumo:
Partially grouted wider reinforced masonry wall, built predominantly with the use of face shell bedded hollow concrete blocks, is adopted extensively in the cyclonic areas due to its economy. Its out-of-plane response to lateral pressure loading is well definied; however its in-plane shear behaviour is less well understood, in particular it is unclear how the grouted reinforced cores affect the load paths within the wall. For the rational design of the walls, clarification is sought as to whether the wall acts as a composite of unreinforced panels surrounded by the reinforced cores or simply as a continuum embedded with reinforcement at wider spacing. This paper reports four full scale walls tested under in-place cyclic shear loading to provide some insight into the effect of the grout cores in altering the load paths within the wall. The global lateral load - lateral deflection hysteretic curves as well as the local responses of some critical zones of the shear walls are presented. It is shown that the aspect ratio of the unreinforced masonry panels surrounded by the reinforced grouted cores within the shear walls have profound effect in ascertaining the behaviour of the shear walls.
Resumo:
A full architectural education typically involves five years of formal education and two years of practice experience under the supervision of a registered architect. In many architecture courses some of this period of internship can be taken either as a ‘year out’ between years of study, or during enrolment as credited study; work place learning or work integrated learning. This period of learning can be characterised as an internship in which the student, as an adult learner, is supervised by their employer. This is a highly authentic learning environment, but one in which the learner is both student and employee, and the architect is both teacher and employer; at times conflicting roles. While the educational advantages of such authentic practice experience are well recognised, there are also concerns about the quality and variability of such experiences. This paper reviews the current state of practice, with respect to architectural internships, and analyses such practice using Laurillard’s ‘conversational framework’ (2002). The framework highlights the interactions and affordances between teacher and student in the form of concepts, adaptations, reflections, actions and feedback. A review of common practice in architectural work place learning, internships in other fields of education, and focused research at the author’s own university, are discussed, then analysed for ‘affordances’ of learning. Such analysis shows both the potential of work place learning to offer a unique environment for learning, and the need to organise and construct such experiences in ways that facilitates learning.
Resumo:
Recently an innovative composite panel system was developed, where a thin insulation layer was used externally between two plasterboards to improve the fire performance of light gauge cold-formed steel frame walls. In this research, finite-element thermal models of both the traditional light gauge cold-formed steel frame wall panels with cavity insulation and the new light gauge cold-formed steel frame composite wall panels were developed to simulate their thermal behaviour under standard and realistic fire conditions. Suitable apparent thermal properties of gypsum plasterboard, insulation materials and steel were proposed and used. The developed models were then validated by comparing their results with available fire test results. This article presents the details of the developed finite-element models of small-scale non-load-bearing light gauge cold-formed steel frame wall panels and the results of the thermal analysis. It has been shown that accurate finite-element models can be used to simulate the thermal behaviour of small-scale light gauge cold-formed steel frame walls with varying configurations of insulations and plasterboards. The numerical results show that the use of cavity insulation was detrimental to the fire rating of light gauge cold-formed steel frame walls, while the use of external insulation offered superior thermal protection to them. The effects of real fire conditions are also presented.
Resumo:
Numerically investigation of natural convection within a differentially heated modified square enclosure with sinusoidally corrugated side walls has been performed for different values of Rayleigh number. The fluid inside the enclosure considered is air and is quiescent, initially. The top and bottom surfaces are flat and considered as adiabatic. Results reveal three main stages: an initial stage, a transitory or oscillatory stage and a steady stage for the development of natural convection flow inside the corrugated cavity. The numerical scheme is based on the finite element method adapted to triangular non-uniform mesh element by a non-linear parametric solution algorithm. Investigation has been performed for the Rayleigh number, Ra ranging from 105 to 108 with variation of corrugation amplitude and frequency. Constant physical properties for the fluid medium have been assumed. Results have been presented in terms of the isotherms, streamlines, temperature plots, average Nusselt numbers, traveling waves and thermal boundary layer thickness plots, temperature and velocity profiles. The effects of sudden differential heating and its consequent transient behavior on fluid flow and heat transfer characteristics have been observed for the range of governing parameters. The present results show that the transient phenomena are greatly influenced by the variation of the Rayleigh Number with corrugation amplitude and frequency.
Resumo:
Abstract. Fire safety of light gauge cold-formed steel frame (LSF) stud walls is significant in the design of buildings. In this research, finite element thermal models of both the traditional LSF wall panels with cavity insulation and the new LSF composite wall panels were developed to simulate their thermal behaviour under standard and real design fire conditions. Suitable thermal properties were proposed for plasterboards and insulations based on laboratory tests and literature review. The developed models were then validated by comparing their results with available fire test results. This paper presents the details of the developed finite element models of load bearing LSF wall panels and the thermal analysis results. It shows that finite element models can be used to simulate the thermal behaviour of load bearing LSF walls with varying configurations of insulations and plasterboards. Failure times of load bearing LSF walls were also predicted based on the results from finite element thermal analyses.
Resumo:
Fire safety of light gauge cold-formed steel frame (LSF) wall systems is significant to the build-ing design. Gypsum plasterboard is widely used as a fire safety material in the building industry. It contains gypsum (CaSO4.2H2O), Calcium Carbonate (CaCO3) and most importantly free and chemically bound water in its crystal structure. The dehydration of the gypsum and the decomposition of Calcium Carbonate absorb heat, which gives the gypsum plasterboard fire resistant qualities. Recently a new composite panel system was developed, where a thin insulation layer was used externally between two plasterboards to improve the fire performance of LSF walls. In this research, finite element thermal models of both the traditional LSF wall panels with cavity insulation and the new LSF composite wall panels were developed to simulate their thermal behaviour under standard and realistic design fire conditions. Suitable thermal properties of gypsum plaster-board, insulation materials and steel were used. The developed models were then validated by comparing their results with fire test results. This paper presents the details of the developed finite element models of non-load bearing LSF wall panels and the thermal analysis results. It has shown that finite element models can be used to simulate the thermal behaviour of LSF walls with varying configurations of insulations and plasterboards. The results show that the use of cavity insulation was detrimental to the fire rating of LSF walls while the use of external insulation offered superior thermal protection. Effects of real fire conditions are also presented.
Resumo:
Fire safety has become an important part in structural design due to the ever increasing loss of properties and lives during fires. Conventionally the fire rating of load bearing wall systems made of Light gauge Steel Frames (LSF) is determined using fire tests based on the standard time-temperature curve given in ISO 834 (ISO, 1999). The standard time-temperature curve given in ISO 834 (ISO, 1999) originated from the application of wood burning furnaces in the early 1900s. However, modern commercial and residential buildings make use of thermoplastic materials, which mean considerably high fuel loads. Hence a detailed fire research study into the performance of LSF walls was undertaken using the developed real fire curves based on Eurocode parametric curves (ECS, 2002) and Barnett’s BFD curves (Barnett, 2002) using both full scale fire tests and numerical studies. It included LSF walls without any insulation, and the recently developed externally insulated composite panel system. This paper presents the details of the numerical studies and the results. It also includes brief details of the development of real building fire curves and experimental studies.
Resumo:
Abstract. Fire resistance has become an important part in structural design due to the ever increasing loss of properties and lives every year. Conventionally the fire rating of load bearing Light gauge Steel Frame (LSF) walls is determined using standard fire tests based on the time-temperature curve given in ISO 834 [1]. Full scale fire testing based on this standard time-temperature curve originated from the application of wood burning furnaces in the early 1900s and it is questionable whether it truly represents the fuel loads in modern buildings. Hence a detailed fire research study into the performance of LSF walls was undertaken using real design fires based on Eurocode parametric curves [2] and Barnett’s ‘BFD’ curves [3]. This paper presents the development of these real fire curves and the results of full scale experimental study into the structural and fire behaviour of load bearing LSF stud wall systems.
Resumo:
The effect of conduction-convection-radiation on natural convection flow of Newtonian optically thick gray fluid, confined in a non-Darcian porous media square cavity is numerically studied. For the gray fluid consideration is given to Rosseland diffusion approximation. Further assuming that (i) the temperature of the left vertical wall is varying linearly with height, (ii) cooled right vertical and top walls and (iii) the bottom wall is uniformly-heated. The governing equations are solved using the Alternate Direct Implicit method together with the Successive Over Relaxation technique. The investigation of the effect of governing parameters namely the Forschheimer resistance (Γ), the Planck constant (Rd), and the temperature difference (Δ), on flow pattern and heat transfer characteristics has been carried out. It was seen that the reduction of flow and heat transfer occurs as the Forschheimer resistance is increased. On the other hand both the strength of flow and heat transfer increases as the temperature ratio, Δ, is increased.
Resumo:
Fire safety has become an important part in structural design due to the ever increasing loss of properties and lives during fires. Fire rating of load bearing wall systems made of Light gauge Steel Frames (LSF) is determined using fire tests based on the standard time-temperature curve given in ISO 834. However, modern residential buildings make use of thermoplastic materials, which mean considerably high fuel loads. Hence a detailed fire research study into the performance of load bearing LSF walls was undertaken using a series of realistic design fire curves developed based on Eurocode parametric curves and Barnett’s BFD curves. It included both full scale fire tests and numerical studies of LSF walls without any insulation, and the recently developed externally insulated composite panels. This paper presents the details of fire tests first, and then the numerical models of tested LSF wall studs. It shows that suitable finite element models can be developed to predict the fire rating of load bearing walls under real fire conditions. The paper also describes the structural and fire performances of externally insulated LSF walls in comparison to the non-insulated walls under real fires, and highlights the effects of standard and real fire curves on fire performance of LSF walls.
Resumo:
Unlike most genera in the early-divergent angiosperm family Annonaceae, Pseuduvaria exhibits a diversity of floral sex expression. Most species are structurally andromonoecious (or possibly androdioecious), although the hermaphroditic flowers have been inferred to be functionally pistillate, with sterile staminodes. Pseuduvaria presents an ideal model for investigating the evolution of floral sex in early-divergent angiosperms, although detailed empirical studies are currently lacking. The phenology and pollination ecology of the Australian endemic species Pseuduvaria mulgraveana are studied in detail, including evaluations of floral scent chemistry, pollen viability, and floral visitors. Results showed that the flowers are pollinated by small diurnal nitidulid beetles and are protogynous. Pollen from both hermaphroditic and staminate flowers are shown to be equally viable. The structurally hermaphroditic flowers are nevertheless functionally pistillate as anther dehiscence is delayed until after petal abscission and hence after the departure of pollinators. This mechanism to achieve functional unisexuality of flowers has not previously been reported in angiosperms. It is known that protogyny is widespread amongst early-divergent angiosperms, including the Annonaceae, and is effective in preventing autogamy. Delayed anther dehiscence represents a further elaboration of this, and is effective in preventing geitonogamy since very few sexually mature flowers occur simultaneously in an individual. We highlight the necessity for field-based empirical interpretations of functional floral sex expression prior to evaluations of evolutionary processes.
Resumo:
Fire safety of light gauge steel frame (LSF) stud walls is important in the design of buildings. Currently LSF walls are increasingly used in the building industry, and are usually made of cold-formed and thin-walled steel studs that are fire-protected by two layers of plasterboard on both sides. Many experimental and numerical studies have been undertaken to investigate the fire performance of load bearing LSF walls under standard fire conditions. However, the standard time-temperature curve does not represent the fire load present in typical residential and commercial buildings that include considerable amount of thermoplastic materials. Real building fires are unlikely to follow a standard time-temperature curve. However, only limited research has been undertaken to investigate the fire performance of load bearing LSF walls under realistic design fire conditions. Therefore in this research, finite element thermal models of the traditional LSF wall panels without cavity insulation and the new LSF composite wall panels were developed to simulate their fire performance under recently developed realistic design fire curves. Suitable thermal properties were proposed for plasterboards and insulations based on laboratory tests and literature review. The developed models were then validated by comparing their thermal performance results with available results from realistic design fire tests, and were later used in parametric studies. This paper presents the details of the developed finite element thermal models of load bearing LSF wall panels under realistic design fire time-temperature curves and the re-sults. It shows that finite element thermal models can be used to predict the fire performance of load bearing LSF walls with varying configurations of insulations and plasterboards under realistic design fires. Failure times of load bearing LSF walls were also predicted based on the results from finite element thermal analyses.