343 resultados para VISUAL INSPECTION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Structural health monitoring (SHM) refers to the procedure used to assess the condition of structures so that their performance can be monitored and any damage can be detected early. Early detection of damage and appropriate retrofitting will aid in preventing failure of the structure and save money spent on maintenance or replacement and ensure the structure operates safely and efficiently during its whole intended life. Though visual inspection and other techniques such as vibration based ones are available for SHM of structures such as bridges, the use of acoustic emission (AE) technique is an attractive option and is increasing in use. AE waves are high frequency stress waves generated by rapid release of energy from localised sources within a material, such as crack initiation and growth. AE technique involves recording these waves by means of sensors attached on the surface and then analysing the signals to extract information about the nature of the source. High sensitivity to crack growth, ability to locate source, passive nature (no need to supply energy from outside, but energy from damage source itself is utilised) and possibility to perform real time monitoring (detecting crack as it occurs or grows) are some of the attractive features of AE technique. In spite of these advantages, challenges still exist in using AE technique for monitoring applications, especially in the area of analysis of recorded AE data, as large volumes of data are usually generated during monitoring. The need for effective data analysis can be linked with three main aims of monitoring: (a) accurately locating the source of damage; (b) identifying and discriminating signals from different sources of acoustic emission and (c) quantifying the level of damage of AE source for severity assessment. In AE technique, the location of the emission source is usually calculated using the times of arrival and velocities of the AE signals recorded by a number of sensors. But complications arise as AE waves can travel in a structure in a number of different modes that have different velocities and frequencies. Hence, to accurately locate a source it is necessary to identify the modes recorded by the sensors. This study has proposed and tested the use of time-frequency analysis tools such as short time Fourier transform to identify the modes and the use of the velocities of these modes to achieve very accurate results. Further, this study has explored the possibility of reducing the number of sensors needed for data capture by using the velocities of modes captured by a single sensor for source localization. A major problem in practical use of AE technique is the presence of sources of AE other than crack related, such as rubbing and impacts between different components of a structure. These spurious AE signals often mask the signals from the crack activity; hence discrimination of signals to identify the sources is very important. This work developed a model that uses different signal processing tools such as cross-correlation, magnitude squared coherence and energy distribution in different frequency bands as well as modal analysis (comparing amplitudes of identified modes) for accurately differentiating signals from different simulated AE sources. Quantification tools to assess the severity of the damage sources are highly desirable in practical applications. Though different damage quantification methods have been proposed in AE technique, not all have achieved universal approval or have been approved as suitable for all situations. The b-value analysis, which involves the study of distribution of amplitudes of AE signals, and its modified form (known as improved b-value analysis), was investigated for suitability for damage quantification purposes in ductile materials such as steel. This was found to give encouraging results for analysis of data from laboratory, thereby extending the possibility of its use for real life structures. By addressing these primary issues, it is believed that this thesis has helped improve the effectiveness of AE technique for structural health monitoring of civil infrastructures such as bridges.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Evaluation of scapular posture is a fundamental component in the clinical evaluation of the upper quadrant. This study examined the intrarater reliability of scapular posture ratings. Methods: A test-retest reliability investigation was undertaken with one week between assessment sessions. At each session physical therapists conducted visual assessments of scapula posture (relative to the thorax) in five different scapula postural planes (plane of scapula, sagittal plane, transverse plane, horizontal plane, and vertical plane). These five plane ratings were performed for four different scapular posture perturbating conditions (rest, isometric shoulder; flexion, abduction, and external rotation). Results. A total of 100 complete scapular posture ratings (50 left, 50 right) were undertaken at each assessment. The observed agreement between the test and retest postural plane ratings ranged from 59% to 87%; 16 of the 20 plane-condition combinations exceeded 75% observed agreement. Kappa (and prevalence adjusted bias adjusted kappa) values were inconsistent across the postural planes and perturbating conditions. Conclusions: This investigation generally revealed fair to moderate intrarater reliability in the rating of scapular posture by visual inspection. However, enough disagreement between assessments was present to warrant caution when interpreting perceived changes in scapula position between longitudinal assessments using visual inspection alone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acoustic sensing is a promising approach to scaling faunal biodiversity monitoring. Scaling the analysis of audio collected by acoustic sensors is a big data problem. Standard approaches for dealing with big acoustic data include automated recognition and crowd based analysis. Automatic methods are fast at processing but hard to rigorously design, whilst manual methods are accurate but slow at processing. In particular, manual methods of acoustic data analysis are constrained by a 1:1 time relationship between the data and its analysts. This constraint is the inherent need to listen to the audio data. This paper demonstrates how the efficiency of crowd sourced sound analysis can be increased by an order of magnitude through the visual inspection of audio visualized as spectrograms. Experimental data suggests that an analysis speedup of 12× is obtainable for suitable types of acoustic analysis, given that only spectrograms are shown.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Age-related macular degeneration (AMD) affects the central vision and subsequently may lead to visual loss in people over 60 years of age. There is no permanent cure for AMD, but early detection and successive treatment may improve the visual acuity. AMD is mainly classified into dry and wet type; however, dry AMD is more common in aging population. AMD is characterized by drusen, yellow pigmentation, and neovascularization. These lesions are examined through visual inspection of retinal fundus images by ophthalmologists. It is laborious, time-consuming, and resource-intensive. Hence, in this study, we have proposed an automated AMD detection system using discrete wavelet transform (DWT) and feature ranking strategies. The first four-order statistical moments (mean, variance, skewness, and kurtosis), energy, entropy, and Gini index-based features are extracted from DWT coefficients. We have used five (t test, Kullback–Lieber Divergence (KLD), Chernoff Bound and Bhattacharyya Distance, receiver operating characteristics curve-based, and Wilcoxon) feature ranking strategies to identify optimal feature set. A set of supervised classifiers namely support vector machine (SVM), decision tree, k -nearest neighbor ( k -NN), Naive Bayes, and probabilistic neural network were used to evaluate the highest performance measure using minimum number of features in classifying normal and dry AMD classes. The proposed framework obtained an average accuracy of 93.70 %, sensitivity of 91.11 %, and specificity of 96.30 % using KLD ranking and SVM classifier. We have also formulated an AMD Risk Index using selected features to classify the normal and dry AMD classes using one number. The proposed system can be used to assist the clinicians and also for mass AMD screening programs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Insulated Rail Joints (IRJs) are safety critical component of the automatic block signalling and broken rail detection systems. IRJs exhibit several failure modes due to complex interaction between the railhead ends and the wheel tread near the gap. These localised zones could not be monitored using automatic sensing devices and hence are resorted to visual inspection only, which is error prone and expensive. In Australia alone currently there are 50,000 IRJs across 80,000 km of rail track. The significance of the problem around the world could thus be realised as there exists one IRJ for each 1.6 km track length. IRJs exhibit extremely low and variable service life; further the track substructure underneath IRJs degrade faster. Thus presence of the IRJs incur significant costs to track maintenance. IRJ failures have also contributed to some train derailments and various traffic disruptions in rail lines. This paper reports a systematic research carried out over seven years on the mechanical behaviour of IRJs for practically relevant outcomes. The research has scientifically established that stiffening the track bed for reduction in impact force is an ill-conceived concept and the most effective method is to reduce the gap size. Further it is established that hardening the railhead ends through laser coating (or other) cannot adequately address the metal flow problem in the long run; modification of the railhead profile is the only appropriate technique to completely eliminate the problem. Part of these outcomes has been adopted by the rail infrastructure owners in Australia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective Evaluation of scapular posture is an integral component of the clinical assessment of painful neck disorders. The aim of this study was to evaluate agreement between therapist judgements of scapula posture in multiple biomechanical planes in individuals with neck pain. Design Inter-therapist reliability study. Setting Research laboratory. Participants Fifteen participants with chronic neck pain. Main outcome measures Four physiotherapists recorded ratings of scapular orientation (relative to the thorax) in five different scapula postural planes (plane of scapula, sagittal plane, transverse plane, horizontal plane, and vertical plane) under four test conditions (at rest, and during three isometric shoulder conditions) in all participants. Inter-therapist reliability was expressed using both generalized and paired kappa coefficient. Results Following adjustment for expected agreement and the high prevalence of neutral ratings (81%), on average both the generalised kappa (0.37) as well as Cohen's Kappa for the two therapist pairs (0.45 and 0.42) demonstrated only slight to moderate inter-therapist reliability. Conclusions The findings suggest that ratings of scapular posture in individuals with neck pain by visual inspection has only slight to moderate reliability and should only be used in conjunction with other clinical tests when judging scapula function in these patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Frogs have received increasing attention due to their effectiveness for indicating the environment change. Therefore, it is important to monitor and assess frogs. With the development of sensor techniques, large volumes of audio data (including frog calls) have been collected and need to be analysed. After transforming the audio data into its spectrogram representation using short-time Fourier transform, the visual inspection of this representation motivates us to use image processing techniques for analysing audio data. Applying acoustic event detection (AED) method to spectrograms, acoustic events are firstly detected from which ridges are extracted. Three feature sets, Mel-frequency cepstral coefficients (MFCCs), AED feature set and ridge feature set, are then used for frog call classification with a support vector machine classifier. Fifteen frog species widely spread in Queensland, Australia, are selected to evaluate the proposed method. The experimental results show that ridge feature set can achieve an average classification accuracy of 74.73% which outperforms the MFCCs (38.99%) and AED feature set (67.78%).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis presents novel vision based control solutions that enable fixed-wing Unmanned Aerial Vehicles to perform tasks of inspection over infrastructure including power lines, pipe lines and roads. This is achieved through the development of techniques that combine visual servoing with alternate manoeuvres that assist the UAV in both following and observing the feature from a downward facing camera. Control designs are developed through techniques of Image Based Visual Servoing to utilise sideslip through Skid-to-Turn and Forward-Slip manoeuvres. This allows the UAV to simultaneously track and collect data over the length of infrastructure, including straight segments and the transition where these meet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a 100 Hz monocular position based visual servoing system to control a quadrotor flying in close proximity to vertical structures approximating a narrow, locally linear shape. Assuming the object boundaries are represented by parallel vertical lines in the image, detection and tracking is achieved using Plücker line representation and a line tracker. The visual information is fused with IMU data in an EKF framework to provide fast and accurate state estimation. A nested control design provides position and velocity control with respect to the object. Our approach is aimed at high performance on-board control for applications allowing only small error margins and without a motion capture system, as required for real world infrastructure inspection. Simulated and ground-truthed experimental results are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Localisation of an AUV is challenging and a range of inspection applications require relatively accurate positioning information with respect to submerged structures. We have developed a vision based localisation method that uses a 3D model of the structure to be inspected. The system comprises a monocular vision system, a spotlight and a low-cost IMU. Previous methods that attempt to solve the problem in a similar way try and factor out the effects of lighting. Effects, such as shading on curved surfaces or specular reflections, are heavily dependent on the light direction and are difficult to deal with when using existing techniques. The novelty of our method is that we explicitly model the light source. Results are shown of an implementation on a small AUV in clear water at night.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an Image Based Visual Servo control design for Fixed Wing Unmanned Aerial Vehicles tracking locally linear infrastructure in the presence of wind using a body fixed imaging sensor. Visual servoing offers improved data collection by posing the tracking task as one of controlling a feature as viewed by the inspection sensor, although is complicated by the introduction of wind as aircraft heading and course angle no longer align. In this work it is shown that the effects of wind alter the desired line angle required for continuous tracking to equal the wind correction angle as would be calculated to set a desired course. A control solution is then sort by linearizing the interaction matrix about the new feature pose such that kinematics of the feature can be augmented with the lateral dynamics of the aircraft, from which a state feedback control design is developed. Simulation results are presented comparing no compensation, integral control and the proposed controller using the wind correction angle, followed by an assessment of response to atmospheric disturbances in the form of turbulence and wind gusts

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a pole inspection system for outdoor environments comprising a high-speed camera on a vertical take-off and landing (VTOL) aerial platform. The pole inspection task requires a vehicle to fly close to a structure while maintaining a fixed stand-off distance from it. Typical GPS errors make GPS-based navigation unsuitable for this task however. When flying outdoors a vehicle is also affected by aerodynamics disturbances such as wind gusts, so the onboard controller must be robust to these disturbances in order to maintain the stand-off distance. Two problems must therefor be addressed: fast and accurate state estimation without GPS, and the design of a robust controller. We resolve these problems by a) performing visual + inertial relative state estimation and b) using a robust line tracker and a nested controller design. Our state estimation exploits high-speed camera images (100Hz) and 70Hz IMU data fused in an Extended Kalman Filter (EKF). We demonstrate results from outdoor experiments for pole-relative hovering, and pole circumnavigation where the operator provides only yaw commands. Lastly, we show results for image-based 3D reconstruction and texture mapping of a pole to demonstrate the usefulness for inspection tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an approach for the inspection of vertical pole-like infrastructure using a vertical take-off and landing (VTOL) unmanned aerial vehicle and shared autonomy. Inspecting vertical structures, such as light and power distribution poles, is a time consuming, dangerous and expensive task with high operator workload. To address these issues, we propose a VTOL platform that can operate at close-quarters, whilst maintaining a safe stand-off distance and rejecting environmental disturbances. We adopt an Image based Visual Servoing (IBVS) technique using only two line features to stabilise the vehicle with respect to a pole. Visual, inertial and sonar data are used, making the approach suitable for indoor or GPS-denied environments. Results from simulation and outdoor flight experiments demonstrate the system is able to successfully inspect and circumnavigate a pole.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with constrained image-based visual servoing of circular and conical spiral motion about an unknown object approximating a single image point feature. Effective visual control of such trajectories has many applications for small unmanned aerial vehicles, including surveillance and inspection, forced landing (homing), and collision avoidance. A spherical camera model is used to derive a novel visual-predictive controller (VPC) using stability-based design methods for general nonlinear model-predictive control. In particular, a quasi-infinite horizon visual-predictive control scheme is derived. A terminal region, which is used as a constraint in the controller structure, can be used to guide appropriate reference image features for spiral tracking with respect to nominal stability and feasibility. Robustness properties are also discussed with respect to parameter uncertainty and additive noise. A comparison with competing visual-predictive control schemes is made, and some experimental results using a small quad rotor platform are given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Power line inspection is a vital function for electricity supply companies but it involves labor-intensive and expensive procedures which are tedious and error-prone for humans to perform. A possible solution is to use an unmanned aerial vehicle (UAV) equipped with video surveillance equipment to perform the inspection. This paper considers how a small, electrically driven rotorcraft conceived for this application could be controlled by visually tracking the overhead supply lines. A dynamic model for a ducted-fan rotorcraft is presented and used to control the action of an Air Vehicle Simulator (AVS), consisting of a cable-array robot. Results show how visual data can be used to determine, and hence regulate in closed loop, the simulated vehicle’s position relative to the overhead lines.