378 resultados para VIRTUAL MACHINE PLACEMENT
Resumo:
This research investigates the impact of participants’ involvement on evaluation of virtual product placement within immersive environments. An exploratory student was conducted and face-to-face, semi structured interviews were used in this research. That sample consisted of active and current Second Life users in the age group of 20-50 years old and from a range of different occupations. Results of the qualitative study indicate that high involvement with the product and deep immersion within Second Life both lead to higher perceptions of product placement effectiveness and enhanced virtual experience. A model developed from the qualitative study is presented and future research is discussed.
Resumo:
VMSCRIPT is a scripting language designed to allow small programs to be compiled for a range of generated tiny virtual machines, suitable for sensor network devices. The VMSCRIPT compiler is an optimising compiler designed to allow quick re-targeting, based on a template, code rewriting model. A compiler backend can be specified at the same time as a virtual machine, with the compiler reading the specification and using it as a code generator.
Resumo:
Live migration of multiple Virtual Machines (VMs) has become an integral management activity in data centers for power saving, load balancing and system maintenance. While state-of-the-art live migration techniques focus on the improvement of migration performance of an independent single VM, only a little has been investigated to the case of live migration of multiple interacting VMs. Live migration is mostly influenced by the network bandwidth and arbitrarily migrating a VM which has data inter-dependencies with other VMs may increase the bandwidth consumption and adversely affect the performances of subsequent migrations. In this paper, we propose a Random Key Genetic Algorithm (RKGA) that efficiently schedules the migration of a given set of VMs accounting both inter-VM dependency and data center communication network. The experimental results show that the RKGA can schedule the migration of multiple VMs with significantly shorter total migration time and total downtime compared to a heuristic algorithm.
Resumo:
This paper explores models for enabling increased participation in experience based learning in legal professional practice. Legal placements as part of “for-credit” units offer students the opportunity to develop their professional skills in practice, reflect on their learning and job performance and take responsibility for their career development and planning. In short, work integrated learning (WIL) in law supports students in making the transition from university to practice. Despite its importance, WIL has traditionally taken place in practical legal training courses (after graduation) rather than during undergraduate law courses. Undergraduate WIL in Australian law schools has generally been limited to legal clinics which require intensive academic supervision, partnerships with community legal organisations and government funding. This paper will propose two models of WIL for undergraduate law which may overcome many of the challenges to engaging in WIL in law (which are consistent with those identified generally by the WIL Report). The first is a virtual law placement in which students use technology to complete a real world project in a virtual workplace under the guidance of a workplace supervisor. The second enables students to complete placements in private legal firms, government legal offices, or community legal centres under the supervision of a legal practitioner. The units complement each other by a) creating and enabling placement opportunities for students who may not otherwise have been able to participate in work placement by reason of family responsibilities, financial constraints, visa restrictions, distance etc; and b) enabling students to capitalise on existing work experience. This paper will report on the pilot offering of the units in 2008, the evaluation of the models and changes implemented in 2009. It will conclude that this multi-pronged approach can be successful in creating opportunities for, and overcoming barriers to participation in experiential learning in legal professional practice.
Resumo:
Managed execution frameworks, such as the.NET Common Language Runtime or the Java Virtual Machine, provide a rich environment for the creation of application programs. These execution environments are ideally suited for languages that depend on type-safety and the declarative control of feature access. Furthermore, such frameworks typically provide a rich collection of library primitives specialized for almost every domain of application programming. Thus, when a new language is implemented on one of these frameworks it becomes necessary to provide some kind of mapping from the new language to the libraries of the framework. The design of such mappings is challenging since the type-system of the new language may not span the domain exposed in the library application programming interfaces (APIs). The nature of these design considerations was clarified in the implementation of the Gardens Point Component Pascal (gpcp) compiler. In this paper we describe the issues, and the solutions that we settled on in this case. The problems that were solved have a wider applicability than just our example, since they arise whenever any similar language is hosted in such an environment.
Resumo:
The programming and retasking of sensor nodes could benefit greatly from the use of a virtual machine (VM) since byte code is compact, can be loaded on demand, and interpreted on a heterogeneous set of devices. The challenge is to ensure good programming tools and a small footprint for the virtual machine to meet the memory constraints of typical WSN platforms. To this end we propose Darjeeling, a virtual machine modelled after the Java VM and capable of executing a substantial subset of the Java language, but designed specifically to run on 8- and 16-bit microcontrollers with 2 - 10 KB of RAM. The Darjeeling VM uses a 16- rather than a 32-bit architecture, which is more efficient on the targeted platforms. Darjeeling features a novel memory organisation with strict separation of reference from non-reference types which eliminates the need for run-time type inspection in the underlying compacting garbage collector. Darjeeling uses a linked stack model that provides light-weight threads, and supports synchronisation. The VM has been implemented on three different platforms and was evaluated with micro benchmarks and a real-world application. The latter includes a pure Java implementation of the collection tree routing protocol conveniently programmed as a set of cooperating threads, and a reimplementation of an existing environmental monitoring application. The results show that Darjeeling is a viable solution for deploying large-scale heterogeneous sensor networks. Copyright 2009 ACM.
Resumo:
Throughout this workshop session we have looked at various configurations of Sage as well as using the Sage UI to run Sage applications (e.g. the image viewer). More advanced usage of Sage has been demonstrated using a Sage compatible version of Paraview highlighting the potential of parallel rendering. The aim of this tutorial session is to give a practical introduction to developing visual content for a tiled display using the Sage libraries. After completing this tutorial you should have the basic tools required to develop your own custom Sage applications. This tutorial is designed for software developers and intermediate programming knowledge is assumed, along with some introductory OpenGL . You will be required to write small portions of C/C++ code to complete this worksheet. However if you do not feel comfortable writing code (or have never written in C or C++), we will be on hand throughout this session so feel free to ask for some help. We have a number of machines in this lab running a VNC client to a virtual machine running Fedora 12. You should all be able to log in with the username “escience”, and password “escience10”. Some of the commands in this worksheet require you to run them as the root user, so note the password as you may need to use it a few times. If you need to access the Internet, then use the username “qpsf01”, password “escience10”
Resumo:
Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This final report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.
Resumo:
Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This Industry focused report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.
Three primary school students’ cognition about 3D rotation in a virtual reality learning environment
Resumo:
This paper reports on three primary school students’ explorations of 3D rotation in a virtual reality learning environment (VRLE) named VRMath. When asked to investigate if you would face the same direction when you turn right 45 degrees first then roll up 45 degrees, or when you roll up 45 degrees first then turn right 45 degrees, the students found that the different order of the two turns ended up with different directions in the VRLE. This was contrary to the students’ prior predictions based on using pen, paper and body movements. The findings of this study showed the difficulty young children have in perceiving and understanding the non-commutative nature of 3D rotation and the power of the computational VRLE in giving students experiences that they rarely have in real life with 3D manipulations and 3D mental movements.
Resumo:
Aims The Medical Imaging Training Immersive Environment (MITIE) system is a recently developed virtual reality (VR) platform that allows students to practice a range of medical imaging techniques. The aim of this pilot study was to harvest user feedback about the educational value of the application and inform future pedagogical development. This presentation explores the use of this technology for skills training and blurring the boundaries between academic learning and clinical skills training. Background MITIE is a 3D VR environment that allows students to manipulate a patient and radiographic equipment in order to produce a VR-generated image for comparison with a gold standard. As with VR initiatives in other health disciplines (1-6) the software mimics clinical practice as much as possible and uses 3D technology to enhance immersion and realism. The software was developed by the Medical Imaging Course Team at a provider University with funding from a Health Workforce Australia “Simulated Learning Environments” grant. Methods Over 80 students undertaking the Bachelor of Medical Imaging Course were randomised to receive practical experience with either MITIE or radiographic equipment in the medical radiation laboratory. Student feedback about the educational value of the software was collected and performance with an assessed setup was measured for both groups for comparison. Ethical approval for the project was provided by the university ethics panel. Results This presentation provides qualitative analysis of student perceptions relating to satisfaction, usability and educational value as well as comparative quantitative performance data. Students reported high levels of satisfaction and both feedback and assessment results confirmed the application’s significance as a pre-clinical training tool. There was a clear emerging theme that MITIE could be a useful learning tool that students could access to consolidate their clinical learning, either during their academic timetables or their clinical placement. Conclusion Student feedback and performance data indicate that MITIE has a valuable role to play in the clinical skills training for medical imaging students both in the academic and the clinical environment. Future work will establish a framework for an appropriate supporting pedagogy that can cross the boundary between the two environments. This project was possible due to funding made available by Health Workforce Australia.
Resumo:
Problem addressed Wrist-worn accelerometers are associated with greater compliance. However, validated algorithms for predicting activity type from wrist-worn accelerometer data are lacking. This study compared the activity recognition rates of an activity classifier trained on acceleration signal collected on the wrist and hip. Methodology 52 children and adolescents (mean age 13.7 +/- 3.1 year) completed 12 activity trials that were categorized into 7 activity classes: lying down, sitting, standing, walking, running, basketball, and dancing. During each trial, participants wore an ActiGraph GT3X+ tri-axial accelerometer on the right hip and the non-dominant wrist. Features were extracted from 10-s windows and inputted into a regularized logistic regression model using R (Glmnet + L1). Results Classification accuracy for the hip and wrist was 91.0% +/- 3.1% and 88.4% +/- 3.0%, respectively. The hip model exhibited excellent classification accuracy for sitting (91.3%), standing (95.8%), walking (95.8%), and running (96.8%); acceptable classification accuracy for lying down (88.3%) and basketball (81.9%); and modest accuracy for dance (64.1%). The wrist model exhibited excellent classification accuracy for sitting (93.0%), standing (91.7%), and walking (95.8%); acceptable classification accuracy for basketball (86.0%); and modest accuracy for running (78.8%), lying down (74.6%) and dance (69.4%). Potential Impact Both the hip and wrist algorithms achieved acceptable classification accuracy, allowing researchers to use either placement for activity recognition.
Resumo:
Aims: The Medical Imaging Training Immersive Environment(MITIE) Computed Tomography(CT) system is an innovative virtual reality (VR) platform that allows students to practice a range of CT techniques. The aim of this pilot study was to harvest user feedback about the educational value of teh application and inform future pedagogical development. This presentation explores the use of this technology for skills training. Background: MITIE CT is a 3D VR environment that allows students to position a patient,and set CT technical parameters including IV contrast dose and dose rate. As with VR initiatives in other health disciplines the software mimics clinical practice as much as possible and uses 3D technology to enhance immersion and realism. The software is new and was developed by the Medical Imaging Course Team at a provider University with funding from a Health Workforce Australia 'Simulated Learning Environments' grant Methods: Current third year medical imaging students were provided with additional 1 hour MITIE laboratory tutorials and studnet feedback was collated with regard to educational value and performance. Ethical approval for the project was provided by the university ethics panel Results: This presentation provides qualitative analysis of student perceptions relating to satisfaction, usability and educational value. Students reported high levels of satisfaction and both feedback and assessment results confirmed the application's significance as a pre-clinical tool. There was a clear emerging theme that MITIE could be a useful learning tool that students could access to consolidate their clinical learning, either on campus or during their clinical placement. Conclusion: Student feedback indicates that MITIE CT has a valuable role to play in the clinial skills training for medical imaging students both in the academic and clinical environment. Future work will establish a framework for an appropriate supprting pedagogy that can cross the boundary between the two environments
Resumo:
Neural interface devices and the melding of mind and machine, challenge the law in determining where civil liability for injury, damage or loss should lie. The ability of the human mind to instruct and control these devices means that in a negligence action against a person with a neural interface device, determining the standard of care owed by him or her will be of paramount importance. This article considers some of the factors that may influence the court’s determination of the appropriate standard of care to be applied in this situation, leading to the conclusion that a new standard of care might evolve.