94 resultados para UAS Dependability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers the conditions that are necessary at system and local levels for teacher assessment to be valid, reliable and rigorous. With sustainable assessment cultures as a goal, the paper examines how education systems can support local level efforts for quality learning and dependable teacher assessment. This is achieved through discussion of relevant research and consideration of a case study involving an evaluation of a cross-sectoral approach to promoting confidence in school-based assessment in Queensland, Australia. Building on the reported case study, essential characteristics for developing sustainable assessment cultures are presented, including: leadership in learning; alignment of curriculum, pedagogy and assessment; the design of quality assessment tasks and accompanying standards, and evidence-based judgement and moderation. Taken together, these elements constitute a new framework for building assessment capabilities and promoting quality assurance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new approach for the inclusion of human expert cognition into autonomous trajectory planning for unmanned aerial systems (UASs) operating in low-altitude environments. During typical UAS operations, multiple objectives may exist; therefore, the use of multicriteria decision aid techniques can potentially allow for convergence to trajectory solutions which better reflect overall mission requirements. In that context, additive multiattribute value theory has been applied to optimize trajectories with respect to multiple objectives. A graphical user interface was developed to allow for knowledge capture from a human decision maker (HDM) through simulated decision scenarios. The expert decision data gathered are converted into value functions and corresponding criteria weightings using utility additive theory. The inclusion of preferences elicited from HDM data within an automated decision system allows for the generation of trajectories which more closely represent the candidate HDM decision preferences. This approach has been demonstrated in this paper through simulation using a fixed-wing UAS operating in low-altitude environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an alternative approach to image segmentation by using the spatial distribution of edge pixels as opposed to pixel intensities. The segmentation is achieved by a multi-layered approach and is intended to find suitable landing areas for an aircraft emergency landing. We combine standard techniques (edge detectors) with novel developed algorithms (line expansion and geometry test) to design an original segmentation algorithm. Our approach removes the dependency on environmental factors that traditionally influence lighting conditions, which in turn have negative impact on pixel-based segmentation techniques. We present test outcomes on realistic visual data collected from an aircraft, reporting on preliminary feedback about the performance of the detection. We demonstrate consistent performances over 97% detection rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a recursive strategy for online detection of actuator faults on a unmanned aerial system (UAS) subjected to accidental actuator faults. The proposed detection algorithm aims to provide a UAS with the capability of identifying and determining characteristics of actuator faults, offering necessary flight information for the design of fault-tolerant mechanism to compensate for the resultant side-effect when faults occur. The proposed fault detection strategy consists of a bank of unscented Kalman filters (UKFs) with each one detecting a specific type of actuator faults and estimating corresponding velocity and attitude information. Performance of the proposed method is evaluated using a typical nonlinear UAS model and it is demonstrated in simulations that our method is able to detect representative faults with a sufficient accuracy and acceptable time delay, and can be applied to the design of fault-tolerant flight control systems of UASs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses a model of the civil aviation reg- ulation framework and shows how the current assess- ment of reliability and risk for piloted aircraft has limited applicability for Unmanned Aircraft Systems (UAS) with high levels of autonomous decision mak- ing. Then, a new framework for risk management of robust autonomy is proposed, which arises from combining quantified measures of risk with normative decision making. The term Robust Autonomy de- scribes the ability of an autonomous system to either continue or abort its operation whilst not breaching a minimum level of acceptable safety in the presence of anomalous conditions. The decision making associ- ated with risk management requires quantifying prob- abilities associated with the measures of risk and also consequences of outcomes related to the behaviour of autonomy. The probabilities are computed from an assessment under both nominal and anomalous sce- narios described by faults, which can be associated with the aircraft’s actuators, sensors, communication link, changes in dynamics, and the presence of other aircraft in the operational space. The consequences of outcomes are characterised by a loss function which rewards the certification decision

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the number of potential applications of Unmanned Aircraft Systems (UAS) grows in civilian operations and national security, National Airworthiness Authorities are under increasing pressure to provide a path for certification and allow UAS integration into the national airspace. The success of this integration depends on developments in improved UAS reliability and safety, regulations for certification, and technologies for operational performance and safety assessment. This paper focusses on the latter and describes the use of a framework for evaluating robust autonomy of UAS, namely, the autonomous system’s ability to either continue operation in the presence of faults or safely shut down. The paper draws parallels between the proposed evaluation framework and the evaluation of pilots during the licensing process. It also discusses how the data from the proposed evaluation can be uses as an aid for decision making in certification and UAS designs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the level of autonomy in Unmanned Aircraft Systems (UAS) increases, there is an imperative need for developing methods to assess robust autonomy. This paper focuses on the computations that lead to a set of measures of robust autonomy. These measures are the probabilities that selected performance indices related to the mission requirements and airframe capabilities remain within regions of acceptable performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the number of Uninhabited Airborne Systems (UAS) proliferates in civil applications, industry is increasingly putting pressure on regulation authorities to provide a path for certification and allow UAS integration into regulated airspace. The success of this integration depends on developments in improved UAS reliability and safety, regulations for certification, and technologies for operational performance and safety assessment. This paper focusses on the last topic and describes a framework for quantifying robust autonomy of UAS, which quantifies the system's ability to either continue operating in the presence of faults or safely shut down. Two figures of merit are used to evaluate vehicle performance relative to mission requirements and the consequences of autonomous decision making in motion control and guidance systems. These figures of merit are interpreted within a probabilistic framework, which extends previous work in the literature. The valuation of the figures of merit can be done using stochastic simulation scenarios during both vehicle development and certification stages with different degrees of integration of hardware-in-the-loop simulation technology. The objective of the proposed framework is to aid in decision making about the suitability of a vehicle with respect to safety and reliability relative to mission requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As Unmanned Aircraft Systems (UAS) grow in complexity, and their level of autonomy increases|moving away from the concept of a remotely piloted systems and more towards autonomous systems|there is a need to further improve reliability and tolerance to faults. The traditional way to accommodate actuator faults is by using standard control allocation techniques as part of the flight control system. The allocation problem in the presence of faults often requires adding constraints that quantify the maximum capacity of the actuators. This in turn requires on-line numerical optimisation. In this paper, we propose a framework for joint allocation and constrained control scheme via vector input scaling. The actuator configuration is used to map actuator constraints into the space of the aircraft generalised forces, which are the magnitudes demanded by the light controller. Then by constraining the output of controller, we ensure that the allocation function always receive feasible demands. With the proposed framework, the allocation problem does not require numerical optimisation, and since the controller handles the constraints, there is not need to implement heuristics to inform the controller about actuator saturation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A framework supporting the systematic development of safety cases for Unmanned Aircraft System (UAS) operations in a broad range of civil and commercial applications is presented. The case study application is the use of UAS for disaster response. In those States where regulations do not preclude UAS operations altogether, approvals for UAS operations can be granted on a case-by-case basis contingent on the provision of a safety case acceptable to the relevant National Airworthiness Authority (NAA). A safety case for UAS operations must show how the risks associated with the hazards have been managed to an acceptable level. The foundational components necessary for structuring and assessing these safety cases have not yet been proposed. Barrier-bow-tie models are used in this paper to structure the safety case for the two primary hazards of 1) a ground impact, and 2) a Mid-Air Collision (MAC). The models establish the set of Risk Control Variables (RCVs) available to reduce the risk. For the ground-impact risk model, seven RCVs are identified which in combination govern the probability of an accident. Similarly, ten RCVs are identified within the MAC model. The effectiveness of the RCVs and how they can implemented in terms of processes, policies, devices, practices, or other actions for each of the case-study applications are discussed. The framework presented can provide for the more systematic and consistent regulation of UAS through a "safety target" approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the experiences gained performing multiple experiments while developing a large autonomous industrial vehicle. Hot Metal Carriers (HMCs) are large forklift-type vehicles used in the light metals industry to move molten or hot metal around a smelter. Autonomous vehicles of this type must be dependable as they are large and potentially hazardous to infrastructure and people. This paper will talk about four aspects of dependability, that of safety, reliability, availability and security and how they have been addressed on our experimental autonomous HMC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Smart Skies is an international research project exploring the development and demonstration of future aviation technologies which facilitate the more efficient utilisation of airspace for both manned and unmanned aircraft. These technologies include autonomous vision-based collision avoidance systems, autonomous airspace separation management systems and a mobile ground-based radar system to support non-segregated UAS operations within the NAS. This presentation will provide an introduction to the key programs of research, detail results from recent flight trial activities and will outline future directions for the project.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Use of Unmanned Aerial Vehicles (UAVs) in support of government applications has already seen significant growth and the potential for use of UAVs in commercial applications is expected to rapidly expand in the near future. However, the issue remains on how such automated or operator-controlled aircraft can be safely integrated into current airspace. If the goal of integration is to be realized, issues regarding safe separation in densely populated airspace must be investigated. This paper investigates automated separation management concepts in uncontrolled airspace that may help prepare for an expected growth of UAVs in Class G airspace. Not only are such investigations helpful for the UAV integration issue, the automated separation management concepts investigated by the authors can also be useful for the development of new or improved Air Traffic Control services in remote regions without any existing infrastructure. The paper will also provide an overview of the Smart Skies program and discuss the corresponding Smart Skies research and development effort to evaluate aircraft separation management algorithms using simulations involving realworld data communication channels, and verified against actual flight trials. This paper presents results from a unique flight test concept that uses real-time flight test data from Australia over existing commercial communication channels to a control center in Seattle for real-time separation management of actual and simulated aircraft. The paper also assesses the performance of an automated aircraft separation manager.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The automation of various aspects of air traffic management has many wide-reaching benefits including: reducing the workload for Air Traffic Controllers; increasing the flexibility of operations (both civil and military) within the airspace system through facilitating automated dynamic changes to en-route flight plans; ensuring safe aircraft separation for a complex mix of airspace users within a highly complex and dynamic airspace management system architecture. These benefits accumulate to increase the efficiency and flexibility of airspace use(1). Such functions are critical for the anticipated increase in volume of manned and unmanned aircraft traffic. One significant challenge facing the advancement of airspace automation lies in convincing air traffic regulatory authorities that the level of safety achievable through the use of automation concepts is comparable to, or exceeds, the accepted safety performance of the current system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the new challenges in aeronautics is combining and accounting for multiple disciplines while considering uncertainties or variability in the design parameters or operating conditions. This paper describes a methodology for robust multidisciplinary design optimisation when there is uncertainty in the operating conditions. The methodology, which is based on canonical evolution algorithms, is enhanced by its coupling with an uncertainty analysis technique. The paper illustrates the use of this methodology on two practical test cases related to Unmanned Aerial Systems (UAS). These are the ideal candidates due to the multi-physics involved and the variability of missions to be performed. Results obtained from the optimisation show that the method is effective to find useful Pareto non-dominated solutions and demonstrate the use of robust design techniques.