98 resultados para Transgenic organisms
Resumo:
In this article, we report transgene-derived resistance in maize to the severe pathogen maize streak virus (MSV). The mutated MSV replication-associated protein gene that was used to transform maize showed stable expression to the fourth generation. Transgenic T 2 and T 3 plants displayed a significant delay in symptom development, a decrease in symptom severity and higher survival rates than non-transgenic plants after MSV challenge, as did a transgenic hybrid made by crossing T 2 Hi-II with the widely grown, commercial, highly MSV-susceptible, white maize genotype WM3. To the best of our knowledge, this is the first maize to be developed with transgenic MSV resistance and the first all-African-produced genetically modified crop plant. © 2007 The Authors.
Resumo:
Maize streak disease is a severe agricultural problem in Africa and the development of maize genotypes resistant to the causal agent, Maize streak virus (MSV), is a priority. A transgenic approach to engineering MSV-resistant maize was developed and tested in this study. A pathogen-derived resistance strategy was adopted by using targeted deletions and nucleotide-substitution mutants of the multifunctional MSV replication-associated protein gene (rep). Various rep gene constructs were tested for their efficacy in limiting replication of wild-type MSV by co-bombardment of maize suspension cells together with an infectious genomic clone of MSV and assaying replicative forms of DNA by quantitative PCR. Digitaria sanguinalis, an MSV-sensitive grass species used as a model monocot, was then transformed with constructs that had inhibited virus replication in the transient-expression system. Challenge experiments using leafhopper-transmitted MSV indicated significant MSV resistance - from highly resistant to immune - in regenerated transgenic D. sanguinalis lines. Whereas regenerated lines containing a mutated full-length rep gene displayed developmental and growth defects, those containing a truncated rep gene both were fertile and displayed no growth defects, making the truncated gene a suitable candidate for the development of transgenic MSV-resistant maize. © 2007 SGM.
Resumo:
Background Insect baculovirus-produced Human immunodeficiency virus type 1 (HIV-1) Gag virus-like-particles (VLPs) stimulate good humoral and cell-mediated immune responses in animals and are thought to be suitable as a vaccine candidate. Drawbacks to this production system include contamination of VLP preparations with baculovirus and the necessity for routine maintenance of infectious baculovirus stock. We used piggyBac transposition as a novel method to create transgenic insect cell lines for continuous VLP production as an alternative to the baculovirus system. Results Transgenic cell lines maintained stable gag transgene integration and expression up to 100 cell passages, and although the level of VLPs produced was low compared to baculovirus-produced VLPs, they appeared similar in size and morphology to baculovirus-expressed VLPs. In a murine immunogenicity study, whereas baculovirus-produced VLPs elicited good CD4 immune responses in mice when used to boost a prime with a DNA vaccine, no boost response was elicited by transgenically produced VLPs. Conclusion Transgenic insect cells are stable and can produce HIV Pr55 Gag VLPs for over 100 passages: this novel result may simplify strategies aimed at making protein subunit vaccines for HIV. Immunogenicity of the Gag VLPs in mice was less than that of baculovirus-produced VLPs, which may be due to lack of baculovirus glycoprotein incorporation in the transgenic cell VLPs. Improved yield and immunogenicity of transgenic cell-produced VLPs may be achieved with the addition of further genetic elements into the piggyBac integron.
Resumo:
Cotton growing landscapes in Australia have been dominated by dual-toxin transgenic Bt varieties since 2004. The cotton crop has thus effectively become a sink for the main target pest, Helicoverpa armigera. Theory predicts that there should be strong selection on female moths to avoid laying on such plants. We assessed oviposition, collected from two cotton-growing regions, by female moths when given a choice of tobacco, cotton and cabbage. Earlier work in the 1980s and 1990s on populations from the same geographic locations indicated these hosts were on average ranked as high, mid and low preference plants, respectively, and that host rankings had a heritable component. In the present study, we found no change in the relative ranking of hosts by females, with most eggs being laid on tobacco, then cotton and least on cabbage. As in earlier work, some females laid most eggs on cotton and aspects of oviposition behaviour had a heritable component. Certainly, cotton is not avoided as a host, and the implications of these finding for managing resistance to Bt cotton are discussed.
Resumo:
Banana is one of the world’s most popular fruit crops and Sukali Ndizi is the most popular dessert banana in the East African region. Like other banana cultivars, Sukali Ndizi is threatened by several constraints, of which the Fusarium wilt disease is the most destructive. Fusarium wilt is caused by a soil-borne fungus, Fusarium oxysporum f.sp. cubense (Foc). No effective control strategy currently exists for this disease and although disease resistance exists in some banana cultivars, introducing resistance into commercial cultivars by conventional breeding is difficult because of low fertility. Considering that conventional breeding generates hybrids with additional undesirable traits, transformation is the most suitable way of introducing resistance in the banana genome. The success of this strategy depends on the availability of genes for genetic transformation. Recently, a novel strategy involving the expression of anti-apoptosis genes in plants was shown to result in resistance against several necrotrophic fungi, including Foc race 1 in banana cultivar Lady Finger. This thesis explores the potential of a plant-codon optimised nematode anti-apoptosis gene (Mced9) to provide resistance against Foc race 1 in dessert banana cultivar Sukali Ndizi. Agrobacterium-mediated transformation was used to transform embryogenic cell suspension of Sukali Ndizi with plant expression vector pYC11, harbouring maize ubiquitin promoter driven Mced9 gene and nptII as a plant selection marker. A total of 42 independently transformed lines were regenerated and characterized. The transgenic lines were multiplied, infected and evaluated for resistance to Foc race 1 in a small pot bioassay. The pathogenicity of the Ugandan Foc race 1 isolate used for infection was pre-determined and the spore concentration was standardised for consistent infection and symptom development. This process involved challenging tissue culture plants of Sukali Ndizi, a Foc race 1 susceptible cultivar and Nakinyika, an East African Highland cultivar known to be resistant to Foc race 1, with Fusarium inoculum and observing external and internal disease symptom development. Rhizome discolouration symptoms were the best indicators of Fusarium wilt with yellowing being an early sign of disease. Three transgenic lines were found to show significantly less disease severities compared to the wild-type control plants after 13 weeks of infection, indicating that Mced9 has the potential to provide tolerance to Fusarium wilt in Sukali Ndizi.
Resumo:
Rice ragged stunt virus (RRSV) is an important pathogen of rice affecting its cultivation in South and South East Asia. An approach based on pathogen derived resistance (PDR) was used to produce RRSV resistant rice cultivars. Sequences from the coding region of RRSV genome segments 7 and 10 (non-structural genes), and 5, 8 and 9 (structural genes) were placed in sense or antisense orientation behind the plant expression promoters CaMV35S, RolC, Ubil, Actl and RBTV. Rice cultivars Taipei 309 and Chinsurah Boro II were transformed by biolistic and/or Agrobacterium-mediated delivery of one or more of these PDR gene constructs. A large number of transgenic lines were produced from calli derived from mature or immature embryos, co-bombarded with the marker gene hph encoding hygromycin resistance and RRSV PDR genes or co-cultivated with strains having the binary vector containing these two genes. Both Mendelian and non-Mendelian segregations were observed in transgenic progeny, especially with transgenic lines produced by biolistics. Preliminary tests conducted in China on selected transgenic lines indicate that plants with RRSV segment 5 antisense PDR gene confer RRSV resistance.
Resumo:
Drosophila melanogaster, along with all insects and the vertebrates, lacks an RdRp gene. We created transgenic strains of Drosophila melanogaster in which the rrf-1 or ego-1 RdRp genes from C. elegans were placed under the control of the yeast GAL4 upstream activation sequence. Activation of the gene was performed by crossing these lines to flies carrying the GAL4 transgene under the control of various Drosophila enhancers. RT-PCR confirmed the successful expression of each RdRp gene. The resulting phenotypes indicated that introduction of the RdRp genes had no effect on D. melanogaster morphological development. © 2010 Springer Science+Business Media B.V.
Resumo:
Plants transformed with Agrobacterium frequently contain T-DNA concatamers with direct-repeat (d/r) or inverted-repeat (i/r) transgene integrations, and these repetitive T-DNA insertions are often associated with transgene silencing. To facilitate the selection of transgenic lines with simple T-DNA insertions, we constructed a binary vector (pSIV) based on the principle of hairpin RNA (hpRNA)-induced gene silencing. The vector is designed so that any transformed cells that contain more than one insertion per locus should generate hpRNA against the selective marker gene, leading to its silencing. These cells should, therefore, be sensitive to the selective agent and less likely to regenerate. Results from Arabidopsis and tobacco transformation showed that pSIV gave considerably fewer transgenic lines with repetitive insertions than did a conventional T-DNA vector (pCON). Furthermore, the transgene was more stably expressed in the pSIV plants than in the pCON plants. Rescue of plant DNA flanking sequences from pSIV plants was significantly more frequent than from pCON plants, suggesting that pSIV is potentially useful for T-DNA tagging. Our results revealed a perfect correlation between the presence of tail-to-tail inverted repeats and transgene silencing, supporting the view that read-through hpRNA transcript derived from i/r T-DNA insertions is a primary inducer of transgene silencing in plants. © CSIRO 2005.
Resumo:
We have tested a methodology for the elimination of the selectable marker gene after Agrobacterium-mediated transformation of barley. This involves segregation of the selectable marker gene away from the gene of interest following co-transformation using a plasmid carrying two T-DNAs, which were located adjacent to each other with no intervening region. A standard binary transformation vector was modified by insertion of a small section composed of an additional left and right T-DNA border, so that the selectable marker gene and the site for insertion of the gene of interest (GOI) were each flanked by a left and right border. Using this vector three different GOIs were transformed into barley. Analysis of transgene inheritance was facilitated by a novel and rapid assay utilizing PCR amplification from macerated leaf tissue. Co-insertion was observed in two thirds of transformants, and among these approximately one quarter had transgene inserts which segregated in the next generation to yield selectable marker-free transgenic plants. Insertion of non-T-DNA plasmid sequences was observed in only one of fourteen SMF lines tested. This technique thus provides a workable system for generating transgenic barley free from selectable marker genes, thereby obviating public concerns regarding proliferation of these genes.
Resumo:
The expression patterns of GUS fusion constructs driven by the Agrobacterium rhizogenes RolC and the maize Sh (Shrunken: sucrose synthase-1) promoters were examined in transgenic potatoes (cv. Atlantic). RolC drove high-level gene expression in phloem tissue, bundle sheath cells and vascular parenchyma, but not in xylem or non-vascular tissues. Sh expression was exclusively confined to phloem tissue. Potato leafroll luteovirus (PLRV) replicates only in phloem tissues, and we show that when RolC is used to drive expression of the PLRV coat protein gene, virus-resistant lines can be obtained. In contrast, no significant resistance was observed when the Sh promoter was used.
Resumo:
The cost of enzymes that hydrolyse lignocellulosic substrates to fermentable sugars needs to be reduced to make cellulosic ethanol a cost-competitive liquid transport fuel. Sugarcane is a perennial crop and the successful integration of cellulase transgenes into the sugarcane production system requires that transgene expression is stable in the ratoon. Herein, we compared the accumulation of recombinant fungal cellobiohydrolase I (CBH I), fungal cellobiohydrolase II (CBH II), and bacterial endoglucanase (EG) in the leaves of mature, initial transgenic sugarcane plants and their mature ratoon. Mature ratoon events containing equivalent or elevated levels of active CBH I, CBH II, and EG in the leaves were identified. Further, we have demonstrated that recombinant fungal CBH I and CBH II can resist proteolysis during sugarcane leaf senescence, while bacterial EG cannot. These results demonstrate the stability of cellulase enzyme transgene expression in transgenic sugarcane and the utility of sugarcane as a biofactory crop for production of cellulases.
Resumo:
Salinity is a major threat to sustainable agriculture worldwide. Plant NHX exchangers play an important role in conferring salt tolerance under salinity stress. In this study, a vacuolar Na+/H+ antiporter gene VrNHX1 (Genbank Accession No. JN656211.1) from mungbean (Vigna radiata) was introduced into cowpea (Vigna unguiculata) by the Agrobacterium tumefaciens-mediated transformation method. Polymerase chain reaction and Southern blot hybridization confirmed the stable integration of VrNHX1 into the cowpea genome. Comparative expression analysis by semi-quantitative RT-PCR revealed higher expression of VrNHX1 in transgenic cowpea plants than wild-type. Under salt stress conditions, T2 transgenic 35S:VrNHX1 cowpea lines exhibited higher tolerance to 200 mM NaCl treatment than wild-type. Furthermore, T2 transgenic 35S:VrNHX1 lines maintained a higher K+/Na+ ratio in the aerial parts under salt stress and accumulated higher [Na+] in roots than wild-type. Physiological analysis revealed lower levels of lipid peroxidation, hydrogen peroxide and oxygen radical production but higher levels of relative water content and proline, ascorbate and chlorophyll contents in T2 transgenic 35S:VrNHX1 lines.
Resumo:
In response to scientific breakthroughs in biotechnology, the development of new technologies, and the demands of a hungry capitalist marketplace, patent law has expanded to accommodate a range of biological inventions. There has been much academic and public debate as to whether gene patents have a positive impact upon research and development, health-care, and the protection of the environment. In a satire of prevailing patenting practices, the English poet and part-time casino waitress, Donna MacLean, sought a patent application - GB0000180.0 - in respect of herself. She explained that she had satisfied the usual patent criteria - in that she was novel, inventive, and useful: It has taken 30 years of hard labor for me to discover and invent myself, and now I wish to protect my invention from unauthorized exploitation, genetic or otherwise. I am new: I have led a private existence and I have not made the invention of myself public. I am not obvious (2000: 18). MacLean said she had many industrial applications. ’For example, my genes can be used in medical research to extremely profitable ends - I therefore wish to have sole control of my own genetic material' (2000: 18). She observed in an interview: ’There's a kind of unpleasant, grasping, greedy atmosphere at the moment around the mapping of the human genome ... I wanted to see if a human being could protect their own genes in law' (Meek, 2000). This special issue of Law in Context charts a new era in the long-standing debate over biological inventions. In the wake of the expansion of patentable subject matter, there has been great strain placed upon patent criteria - such as ’novelty', ’inventive step', and ’utility'. Furthermore, there has been a new focus upon legal doctrines which facilitate access to patented inventions - like the defence of experimental use, the ’Bolar' exception, patent pooling, and compulsory licensing. There has been a concerted effort to renew patent law with an infusion of ethical principles dealing with informed consent and benefit sharing. There has also been a backlash against the commercialisation of biological inventions, and a call by some activists for the abolition of patents on genetic inventions. This collection considers a wide range of biological inventions - ranging from micro-organisms, plants and flowers and transgenic animals to genes, express sequence tags, and research tools, as well as genetic diagnostic tests and pharmaceutical drugs. It is thus an important corrective to much policy work, which has been limited in its purview to merely gene patents and biomedical research. This collection compares and contrasts the various approaches of a number of jurisdictions to the legal problems in respect of biological inventions. In particular, it looks at the complexities of the 1998 European Union Directive on the Legal Protection of Biotechnological Inventions, as well as decisions of member states, such as the Netherlands, and peripheral states, like Iceland. The edition considers US jurisprudence on patent law and policy, as well as recent developments in Canada. It also focuses upon recent developments in Australia - especially in the wake of parallel policy inquiries into gene patents and access to genetic resources.
Resumo:
In response to scientific breakthroughs in biotechnology, the development of new technologies, and the demands of a hungry capitalist marketplace, patent law has expanded to accommodate a range of biological inventions. There has been much academic and public debate as to whether gene patents have a positive impact upon research and development, health-care, and the protection of the environment. In a satire of prevailing patenting practices, the English poet and part-time casino waitress, Donna MacLean, sought a patent application - GB0000180.0 - in respect of herself. She explained that she had satisfied the usual patent criteria - in that she was novel, inventive, and useful: It has taken 30 years of hard labor for me to discover and invent myself, and now I wish to protect my invention from unauthorized exploitation, genetic or otherwise. I am new: I have led a private existence and I have not made the invention of myself public. I am not obvious (2000: 18). MacLean said she had many industrial applications. 'For example, my genes can be used in medical research to extremely profitable ends - I therefore wish to have sole control of my own genetic material' (2000: 18). She observed in an interview: 'There's a kind of unpleasant, grasping, greedy atmosphere at the moment around the mapping of the human genome ... I wanted to see if a human being could protect their own genes in law' (Meek, 2000). This special issue of Law in Context charts a new era in the long-standing debate over biological inventions. In the wake of the expansion of patentable subject matter, there has been great strain placed upon patent criteria - such as 'novelty', 'inventive step', and 'utility'. Furthermore, there has been a new focus upon legal doctrines which facilitate access to patented inventions - like the defence of experimental use, the 'Bolar' exception, patent pooling, and compulsory licensing. There has been a concerted effort to renew patent law with an infusion of ethical principles dealing with informed consent and benefit sharing. There has also been a backlash against the commercialisation of biological inventions, and a call by some activists for the abolition of patents on genetic inventions. This collection considers a wide range of biological inventions - ranging from micro-organisms, plants and flowers and transgenic animals to genes, express sequence tags, and research tools, as well as genetic diagnostic tests and pharmaceutical drugs. It is thus an important corrective to much policy work, which has been limited in its purview to merely gene patents and biomedical research. This collection compares and contrasts the various approaches of a number of jurisdictions to the legal problems in respect of biological inventions. In particular, it looks at the complexities of the 1998 European Union Directive on the Legal Protection of Biotechnological Inventions, as well as decisions of member states, such as the Netherlands, and peripheral states, like Iceland. The edition considers US jurisprudence on patent law and policy, as well as recent developments in Canada. It also focuses upon recent developments in Australia - especially in the wake of parallel policy inquiries into gene patents and access to genetic resources.
Resumo:
The banana industry worldwide is under threat from a fungal disease known as Fusarium wilt, a disease for which there is no chemical control. Conventional breeding approaches to generate resistant banana varieties are lengthy and very difficult. As such, genetic engineering for disease resistance is considered the most viable control option. In this PhD thesis, genetically modified banana plants were generated using several different stress tolerance genes. When challenged with Fusarium wilt in glasshouse trials, some lines showed increased resistance to the disease. The promising elite lines generated in this study will now require testing in field trials.