179 resultados para Terrain vague
Resumo:
The John Lewis Partnership is one of Europe’s largest models of employee ownership and has been operating a form of employee involvement and participation since its formation in 1929. It is frequently held up as a model of best practice (Cathcart, 2013) and has been described as a ‘workers’ paradise’ (Stummer and Lacey, 2001). At the beginning of 2012, the Deputy Prime Minister of the UK unveiled plans to create a ‘John Lewis Economy’ (Wintour, 2012). As John Lewis is being positioned at the heart of political and media discussions in the UK about alternatives to the corporate capitalist model of enterprise, it is vital that more is known about the experience of employee involvement and participation within the organisation. This article explores the ways in which the practice of employee involvement and participation has changed in John Lewis as a result of competing employee and managerial interests. Its contribution is a contemporary exploration of participation in the John Lewis Partnership and an examination of the ways in which management and employees contested the meaning and practice of employee involvement and participation as part of a ‘democracy project’, which culminated in significant changes and degeneration of the democratic structures.
Resumo:
For a planetary rover to successfully traverse across unstructured terrain autonomously, one of the major challenges is to assess its local traversability such that it can plan a trajectory to achieve its mission goals efficiently while minimising risk to the vehicle itself. This paper aims to provide a comparative study on different approaches for representing the geometry of Martian terrain for the purpose of evaluating terrain traversability. An accurate representation of the geometric properties of the terrain is essential as it can directly affect the determination of traversability for a ground vehicle. We explore current state-of-the-art techniques for terrain estimation, in particular Gaussian Processes (GP) in various forms, and discuss the suitability of each technique in the context of an unstructured Martian terrain. Furthermore, we present the limitations of regression techniques in terms of spatial correlation and continuity assumptions, and the impact on traversability analysis of a planetary rover across unstructured terrain. The analysis was performed on datasets of the Mars Yard at the Powerhouse Museum in Sydney, obtained using the onboard RGB-D camera.
Resumo:
It is well recognized that many scientifically interesting sites on Mars are located in rough terrains. Therefore, to enable safe autonomous operation of a planetary rover during exploration, the ability to accurately estimate terrain traversability is critical. In particular, this estimate needs to account for terrain deformation, which significantly affects the vehicle attitude and configuration. This paper presents an approach to estimate vehicle configuration, as a measure of traversability, in deformable terrain by learning the correlation between exteroceptive and proprioceptive information in experiments. We first perform traversability estimation with rigid terrain assumptions, then correlate the output with experienced vehicle configuration and terrain deformation using a multi-task Gaussian Process (GP) framework. Experimental validation of the proposed approach was performed on a prototype planetary rover and the vehicle attitude and configuration estimate was compared with state-of-the-art techniques. We demonstrate the ability of the approach to accurately estimate traversability with uncertainty in deformable terrain.
Learned stochastic mobility prediction for planning with control uncertainty on unstructured terrain
Resumo:
Motion planning for planetary rovers must consider control uncertainty in order to maintain the safety of the platform during navigation. Modelling such control uncertainty is difficult due to the complex interaction between the platform and its environment. In this paper, we propose a motion planning approach whereby the outcome of control actions is learned from experience and represented statistically using a Gaussian process regression model. This mobility prediction model is trained using sample executions of motion primitives on representative terrain, and predicts the future outcome of control actions on similar terrain. Using Gaussian process regression allows us to exploit its inherent measure of prediction uncertainty in planning. We integrate mobility prediction into a Markov decision process framework and use dynamic programming to construct a control policy for navigation to a goal region in a terrain map built using an on-board depth sensor. We consider both rigid terrain, consisting of uneven ground, small rocks, and non-traversable rocks, and also deformable terrain. We introduce two methods for training the mobility prediction model from either proprioceptive or exteroceptive observations, and report results from nearly 300 experimental trials using a planetary rover platform in a Mars-analogue environment. Our results validate the approach and demonstrate the value of planning under uncertainty for safe and reliable navigation.
Resumo:
With the increasing need to adapt to new environments, data-driven approaches have been developed to estimate terrain traversability by learning the rover’s response on the terrain based on experience. Multiple learning inputs are often used to adequately describe the various aspects of terrain traversability. In a complex learning framework, it can be difficult to identify the relevance of each learning input to the resulting estimate. This paper addresses the suitability of each learning input by systematically analyzing the impact of each input on the estimate. Sensitivity Analysis (SA) methods provide a means to measure the contribution of each learning input to the estimate variability. Using a variance-based SA method, we characterize how the prediction changes as one or more of the input changes, and also quantify the prediction uncertainty as attributed from each of the inputs in the framework of dependent inputs. We propose an approach built on Analysis of Variance (ANOVA) decomposition to examine the prediction made in a near-to-far learning framework based on multi-task GP regression. We demonstrate the approach by analyzing the impact of driving speed and terrain geometry on the prediction of the rover’s attitude and chassis configuration in a Marsanalogue terrain using our prototype rover Mawson.
Resumo:
Terrain traversability estimation is a fundamental requirement to ensure the safety of autonomous planetary rovers and their ability to conduct long-term missions. This paper addresses two fundamental challenges for terrain traversability estimation techniques. First, representations of terrain data, which are typically built by the rover’s onboard exteroceptive sensors, are often incomplete due to occlusions and sensor limitations. Second, during terrain traversal, the rover-terrain interaction can cause terrain deformation, which may significantly alter the difficulty of traversal. We propose a novel approach built on Gaussian process (GP) regression to learn, and consequently to predict, the rover’s attitude and chassis configuration on unstructured terrain using terrain geometry information only. First, given incomplete terrain data, we make an initial prediction under the assumption that the terrain is rigid, using a learnt kernel function. Then, we refine this initial estimate to account for the effects of potential terrain deformation, using a near-to-far learning approach based on multitask GP regression. We present an extensive experimental validation of the proposed approach on terrain that is mostly rocky and whose geometry changes as a result of loads from rover traversals. This demonstrates the ability of the proposed approach to accurately predict the rover’s attitude and configuration in partially occluded and deformable terrain.
Resumo:
Data-driven approaches such as Gaussian Process (GP) regression have been used extensively in recent robotics literature to achieve estimation by learning from experience. To ensure satisfactory performance, in most cases, multiple learning inputs are required. Intuitively, adding new inputs can often contribute to better estimation accuracy, however, it may come at the cost of a new sensor, larger training dataset and/or more complex learning, some- times for limited benefits. Therefore, it is crucial to have a systematic procedure to determine the actual impact each input has on the estimation performance. To address this issue, in this paper we propose to analyse the impact of each input on the estimate using a variance-based sensitivity analysis method. We propose an approach built on Analysis of Variance (ANOVA) decomposition, which can characterise how the prediction changes as one or more of the input changes, and also quantify the prediction uncertainty as attributed from each of the inputs in the framework of dependent inputs. We apply the proposed approach to a terrain-traversability estimation method we proposed in prior work, which is based on multi-task GP regression, and we validate this implementation experimentally using a rover on a Mars-analogue terrain.
Resumo:
Traditional information retrieval (IR) systems respond to user queries with ranked lists of relevant documents. The separation of content and structure in XML documents allows individual XML elements to be selected in isolation. Thus, users expect XML-IR systems to return highly relevant results that are more precise than entire documents. In this paper we describe the implementation of a search engine for XML document collections. The system is keyword based and is built upon an XML inverted file system. We describe the approach that was adopted to meet the requirements of Content Only (CO) and Vague Content and Structure (VCAS) queries in INEX 2004.
Resumo:
This is the first volume to capture the essence of the burgeoning field of cultural studies in a concise and accessible manner. Other books have explored the British and North American traditions, but this is the first guide to the ideas, purposes and controversies that have shaped the subject. The author sheds new light on neglected pioneers and a clear route map through the terrain. He provides lively critical narratives on a dazzling array of key figures including, Arnold, Barrell, Bennett, Carey, Fiske, Foucault, Grossberg, Hall, Hawkes, hooks, Hoggart, Leadbeater, Lissistzky, Malevich, Marx, McLuhan, McRobbie, D Miller, T Miller, Morris, Quiller-Couch, Ross, Shaw, Urry, Williams, Wilson, Wolfe and Woolf. Hartley also examines a host of central themes in the subject including literary and political writing, publishing, civic humanism, political economy and Marxism, sociology, feminism, anthropology and the pedagogy of cultural studies.
Resumo:
For a sustainable building industry, not only should the environmental and economic indicators be evaluated but also the societal indicators for building. Current indicators can be in conflict with each other, thus decision making is difficult to clearly quantify and assess sustainability. For the sustainable building, the objectives of decreasing both adverse environmental impact and cost are in conflict. In addition, even though both objectives may be satisfied, building management systems may present other problems such as convenience of occupants, flexibility of building, or technical maintenance, which are difficult to quantify as exact assessment data. These conflicting problems confronting building managers or planners render building management more difficult. This paper presents a methodology to evaluate a sustainable building considering socio-economic and environmental characteristics of buildings, and is intended to assist the decision making for building planners or practitioners. The suggested methodology employs three main concepts: linguistic variables, fuzzy numbers, and an analytic hierarchy process. The linguistic variables are used to represent the degree of appropriateness of qualitative indicators, which are vague or uncertain. These linguistic variables are then translated into fuzzy numbers to reflect their uncertainties and aggregated into the final fuzzy decision value using a hierarchical structure. Through a case study, the suggested methodology is applied to the evaluation of a building. The result demonstrates that the suggested approach can be a useful tool for evaluating a building for sustainability.
A research framework to investigate the performance of financial incentives in construction projects
Resumo:
Since 1995 the buildingSMART International Alliance for Interoperability (buildingSMART)has developed a robust standard called the Industry Foundation Classes (IFC). IFC is an object oriented data model with related file format that has facilitated the efficient exchange of data in the development of building information models (BIM). The Cooperative Research Centre for Construction Innovation has contributed to the international effort in the development of the IFC standard and specifically the reinforced concrete part of the latest IFC 2x3 release. Industry Foundation Classes have been endorsed by the International Standards Organisation as a Publicly Available Specification (PAS) under the ISO label ISO/PAS 16739. For more details, go to http://www.tc184- sc4.org/About_TC184-SC4/About_SC4_Standards/ The current IFC model covers the building itself to a useful level of detail. The next stage of development for the IFC standard is where the building meets the ground (terrain) and with civil and external works like pavements, retaining walls, bridges, tunnels etc. With the current focus in Australia on infrastructure projects over the next 20 years a logical extension to this standard was in the area of site and civil works. This proposal recognises that there is an existing body of work on the specification of road representation data. In particular, LandXML is recognised as also is TransXML in the broader context of transportation and CityGML in the common interfacing of city maps, buildings and roads. Examination of interfaces between IFC and these specifications is therefore within the scope of this project. That such interfaces can be developed has already been demonstrated in principle within the IFC for Geographic Information Systems (GIS) project. National road standards that are already in use should be carefully analysed and contacts established in order to gain from this knowledge. The Object Catalogue for the Road Transport Sector (OKSTRA) should be noted as an example. It is also noted that buildingSMART Norway has submitted a proposal
Resumo:
Objective: To define characteristics of vehicle crashes occurring on rural private property in north Queensland with an exploration of associated risk factors. Design: Descriptive analysis of private property crash data collected by the Rural and Remote Road Safety Study. Setting: Rural and remote north Queensland. Participants: A total of 305 vehicle controllers aged 16 years or over hospitalised at Atherton, Cairns, Mount Isa or Townsville for at least 24 hours as a result of a vehicle crash. Main outcome measure: A structured questionnaire completed by participants covering crash details, lifestyle and demographic characteristics, driving history, medical history, alcohol and drug use and attitudes to road use. Results: Overall, 27.9% of interviewees crashed on private property, with the highest proportion of private road crashes occurring in the North West Statistical Division (45%). Risk factors shown to be associated with private property crashes included male sex, riding off-road motorcycle or all-terrain vehicle, first-time driving at that site, lack of licence for vehicle type, recreational use and not wearing a helmet or seatbelt. Conclusions: Considerable trauma results from vehicle crashes on rural private property. These crashes are not included in most crash data sets, which are limited to public road crashes. Legislation and regulations applicable to private property vehicle use are largely focused on workplace health and safety, yet work-related crashes represent a minority of private property crashes in north Queensland.
Resumo:
To navigate successfully in a previously unexplored environment, a mobile robot must be able to estimate the spatial relationships of the objects of interest accurately. A Simultaneous Localization and Mapping (SLAM) sys- tem employs its sensors to build incrementally a map of its surroundings and to localize itself in the map simultaneously. The aim of this research project is to develop a SLAM system suitable for self propelled household lawnmowers. The proposed bearing-only SLAM system requires only an omnidirec- tional camera and some inexpensive landmarks. The main advantage of an omnidirectional camera is the panoramic view of all the landmarks in the scene. Placing landmarks in a lawn field to define the working domain is much easier and more flexible than installing the perimeter wire required by existing autonomous lawnmowers. The common approach of existing bearing-only SLAM methods relies on a motion model for predicting the robot’s pose and a sensor model for updating the pose. In the motion model, the error on the estimates of object positions is cumulated due mainly to the wheel slippage. Quantifying accu- rately the uncertainty of object positions is a fundamental requirement. In bearing-only SLAM, the Probability Density Function (PDF) of landmark position should be uniform along the observed bearing. Existing methods that approximate the PDF with a Gaussian estimation do not satisfy this uniformity requirement. This thesis introduces both geometric and proba- bilistic methods to address the above problems. The main novel contribu- tions of this thesis are: 1. A bearing-only SLAM method not requiring odometry. The proposed method relies solely on the sensor model (landmark bearings only) without relying on the motion model (odometry). The uncertainty of the estimated landmark positions depends on the vision error only, instead of the combination of both odometry and vision errors. 2. The transformation of the spatial uncertainty of objects. This thesis introduces a novel method for translating the spatial un- certainty of objects estimated from a moving frame attached to the robot into the global frame attached to the static landmarks in the environment. 3. The characterization of an improved PDF for representing landmark position in bearing-only SLAM. The proposed PDF is expressed in polar coordinates, and the marginal probability on range is constrained to be uniform. Compared to the PDF estimated from a mixture of Gaussians, the PDF developed here has far fewer parameters and can be easily adopted in a probabilistic framework, such as a particle filtering system. The main advantages of our proposed bearing-only SLAM system are its lower production cost and flexibility of use. The proposed system can be adopted in other domestic robots as well, such as vacuum cleaners or robotic toys when terrain is essentially 2D.
Resumo:
The dancing doctorate is an interrogative endeavour which can but nurture the art form and forge a beneficial dynamism between those who seek and those who assess the emerging knowledges of dance’. (Vincs, 2009) From 2006-2008 three dance academics from Perth, Brisbane and Melbourne undertook a research project entitled Dancing between Diversity and Consistency: Refining Assessment in Postgraduate Degrees in Dance, funded by the ALTC Priority Projects Program. Although assessment rather than supervision was the primary focus of this research, interviews with 40 examiner/supervisors, 7 research deans and 32 candidates across Australia and across the creative arts, primarily in dance, provide an insight into what might be considered best practice in preparing students for higher research degrees, and the challenges that embodied and experiential knowledges present for supervision. The study also gained the industry perspectives of dance professionals in a series of national forums in 5 cities, based around the value of higher degrees in dance. The qualitative data gathered from these two primary sources was coded and analysed using the NVivo system. Further perspectives were drawn from international consultant and dance researcher Susan Melrose, as well as recent publications in the field. Dance is a young addition to academia and consequently there tends to be a close liaison between the academy and the industry, with a relational fluidity that is both beneficial and problematic. This partially explains why dance research higher degrees are predominantly practice-led (or multi-modal, referring to those theses where practice comprises the substantial examinable component). As a physical, embodied art form, dance engages with the contested territory of legitimising alternative forms of knowledge that do not sit comfortably with accepted norms of research. In supporting research students engaged with dance practice, supervisors traverse the tricky terrain of balancing university academic requirements with studies that are emergent, not only in the practice and attendant theory but in their methodologies and open-ended outcomes; and in an art form in which originality and new knowledge also arises from collaborative creative processes. Formal supervisor accreditation through training is now mandatory in most Australian universities, but it tends to be generic and not address supervisory specificity. This paper offers the kind of alternative proposed by Edwards (2002) that improving postgraduate supervision will be effective if supervisors are empowered to generate their own standards and share best practice; in this case, in ways appropriate to the needs of their discipline and alternative modes of thesis presentation. In order to frame the qualities and processes conducive to this goal, this paper will draw on both the experiences of interviewees and on philosophical premises which underpin the research findings of our study. These include the ongoing challenge of dissolving the binary oppositions of theory and practice, especially in creative arts practice where theory resides in and emerges from the doing as much as in articulating reflection about the doing through what Melrose (2003) terms ‘mixed mode disciplinary practices’. In guiding practitioners through research higher degrees, how do supervisors deal with not only different forms of knowledge but indeed differing modes of knowledge? How can they navigate tensions that occur between the ‘incompatible competencies’ (Candlin, 2000) of the ‘spectating’ academic experts with their ‘irrepressible drive ... to inscribe, interpret, and hence to practise temporal closure’, and practitioner experts who create emergent works of ‘residual unfinishedness’ (Melrose 2006) which are not only embodied but ephemeral, as in the case of live performance?