722 resultados para Stochastic modelling


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study greatly enhanced our knowledge of the potential for geothermal energy development in Queensland as a viable clean energy source in the coming decades. Key outcomes of the project were understanding the first-order controls on the concentration of the heat-producing elements: uranium, thorium and potassium in granitic rocks, and constraining where rocks with the greatest heat-producing potential lie at depth in Queensland. Importantly, new temperature and heat flow maps for southwest Queensland were developed that will greatly assist future exploration efforts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Discrete stochastic simulations are a powerful tool for understanding the dynamics of chemical kinetics when there are small-to-moderate numbers of certain molecular species. In this paper we introduce delays into the stochastic simulation algorithm, thus mimicking delays associated with transcription and translation. We then show that this process may well explain more faithfully than continuous deterministic models the observed sustained oscillations in expression levels of hes1 mRNA and Hes1 protein.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Airport system is complex. Passenger dynamics within it appear to be complicate as well. Passenger behaviours outside standard processes are regarded more significant in terms of public hazard and service rate issues. In this paper, we devised an individual agent decision model to simulate stochastic passenger behaviour in airport departure terminal. Bayesian networks are implemented into the decision making model to infer the probabilities that passengers choose to use any in-airport facilities. We aim to understand dynamics of the discretionary activities of passengers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work we discuss the effects of white and coloured noise perturbations on the parameters of a mathematical model of bacteriophage infection introduced by Beretta and Kuang in [Math. Biosc. 149 (1998) 57]. We numerically simulate the strong solutions of the resulting systems of stochastic ordinary differential equations (SDEs), with respect to the global error, by means of numerical methods of both Euler-Taylor expansion and stochastic Runge-Kutta type.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reviews the main development of approaches to modelling urban public transit users’ route choice behaviour from 1960s to the present. The approaches reviewed include the early heuristic studies on finding the least cost transit route and all-or-nothing transit assignment, the bus common line problem and corresponding network representation methods, the disaggregate discrete choice models which are based on random utility maximization assumptions, the deterministic use equilibrium and stochastic user equilibrium transit assignment models, and the recent dynamic transit assignment models using either frequency or schedule based network formulation. In addition to reviewing past outcomes, this paper also gives an outlook into the possible future directions of modelling transit users’ route choice behaviour. Based on the comparison with the development of models for motorists’ route choice and traffic assignment problems in an urban road area, this paper points out that it is rewarding for transit route choice research to draw inspiration from the intellectual outcomes out of the road area. Particularly, in light of the recent advancement of modelling motorists’ complex road route choice behaviour, this paper advocates that the modelling practice of transit users’ route choice should further explore the complexities of the problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Public transport is one of the key promoters of sustainable urban transport. To encourage and increase public transport patronage it is important to investigate the route choice behaviours of urban public transit users. This chapter reviews the main developments of modelling urban public transit users’ route choice behaviours in a historical perspective, from the 1960s to the present time. The approaches re- viewed for this study include the early heuristic studies on finding the least-cost transit route and all-or- nothing transit assignment, the bus common lines problem, the disaggregate discrete choice models, the deterministic and stochastic user equilibrium transit assignment models, and the recent dynamic transit assignment models. This chapter also provides an outlook for the future directions of modelling transit users’ route choice behaviours. Through the comparison with the development of models for motorists’ route choice and traffic assignment problems, this chapter advocates that transit route choice research should draw inspiration from the research outcomes from the road area, and that the modelling practice of transit users’ route choice should further explore the behavioural complexities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reviews the main studies on transit users’ route choice in thecontext of transit assignment. The studies are categorized into three groups: static transit assignment, within-day dynamic transit assignment, and emerging approaches. The motivations and behavioural assumptions of these approaches are re-examined. The first group includes shortest-path heuristics in all-or-nothing assignment, random utility maximization route-choice models in stochastic assignment, and user equilibrium based assignment. The second group covers within-day dynamics in transit users’ route choice, transit network formulations, and dynamic transit assignment. The third group introduces the emerging studies on behavioural complexities, day-to-day dynamics, and real-time dynamics in transit users’ route choice. Future research directions are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the development of a simulation model for operating theatres. Elective patient scheduling is complicated by several factors; stochastic demand for resources due to variation in the nature and severity of a patient’s illness, unexpected complications in a patient’s course of treatment and the arrival of non-scheduled emergency patients which compete for resources. Extend simulation software was used for its ability to represent highly complex systems and analyse model outputs. Patient arrivals and lengths of surgery are determined by analysis of historical data. The model was used to explore the effects increasing patient arrivals and alternative elective patient admission disciplines would have on the performance measures. The model can be used as a decision support system for hospital planners.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over recent years a significant amount of research has been undertaken to develop prognostic models that can be used to predict the remaining useful life of engineering assets. Implementations by industry have only had limited success. By design, models are subject to specific assumptions and approximations, some of which are mathematical, while others relate to practical implementation issues such as the amount of data required to validate and verify a proposed model. Therefore, appropriate model selection for successful practical implementation requires not only a mathematical understanding of each model type, but also an appreciation of how a particular business intends to utilise a model and its outputs. This paper discusses business issues that need to be considered when selecting an appropriate modelling approach for trial. It also presents classification tables and process flow diagrams to assist industry and research personnel select appropriate prognostic models for predicting the remaining useful life of engineering assets within their specific business environment. The paper then explores the strengths and weaknesses of the main prognostics model classes to establish what makes them better suited to certain applications than to others and summarises how each have been applied to engineering prognostics. Consequently, this paper should provide a starting point for young researchers first considering options for remaining useful life prediction. The models described in this paper are Knowledge-based (expert and fuzzy), Life expectancy (stochastic and statistical), Artificial Neural Networks, and Physical models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The behaviour of ion channels within cardiac and neuronal cells is intrinsically stochastic in nature. When the number of channels is small this stochastic noise is large and can have an impact on the dynamics of the system which is potentially an issue when modelling small neurons and drug block in cardiac cells. While exact methods correctly capture the stochastic dynamics of a system they are computationally expensive, restricting their inclusion into tissue level models and so approximations to exact methods are often used instead. The other issue in modelling ion channel dynamics is that the transition rates are voltage dependent, adding a level of complexity as the channel dynamics are coupled to the membrane potential. By assuming that such transition rates are constant over each time step, it is possible to derive a stochastic differential equation (SDE), in the same manner as for biochemical reaction networks, that describes the stochastic dynamics of ion channels. While such a model is more computationally efficient than exact methods we show that there are analytical problems with the resulting SDE as well as issues in using current numerical schemes to solve such an equation. We therefore make two contributions: develop a different model to describe the stochastic ion channel dynamics that analytically behaves in the correct manner and also discuss numerical methods that preserve the analytical properties of the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth of solid tumours beyond a critical size is dependent upon angiogenesis, the formation of new blood vessels from an existing vasculature. Tumours may remain dormant at microscopic sizes for some years before switching to a mode in which growth of a supportive vasculature is initiated. The new blood vessels supply nutrients, oxygen, and access to routes by which tumour cells may travel to other sites within the host (metastasize). In recent decades an abundance of biological research has focused on tumour-induced angiogenesis in the hope that treatments targeted at the vasculature may result in a stabilisation or regression of the disease: a tantalizing prospect. The complex and fascinating process of angiogenesis has also attracted the interest of researchers in the field of mathematical biology, a discipline that is, for mathematics, relatively new. The challenge in mathematical biology is to produce a model that captures the essential elements and critical dependencies of a biological system. Such a model may ultimately be used as a predictive tool. In this thesis we examine a number of aspects of tumour-induced angiogenesis, focusing on growth of the neovasculature external to the tumour. Firstly we present a one-dimensional continuum model of tumour-induced angiogenesis in which elements of the immune system or other tumour-cytotoxins are delivered via the newly formed vessels. This model, based on observations from experiments by Judah Folkman et al., is able to show regression of the tumour for some parameter regimes. The modelling highlights a number of interesting aspects of the process that may be characterised further in the laboratory. The next model we present examines the initiation positions of blood vessel sprouts on an existing vessel, in a two-dimensional domain. This model hypothesises that a simple feedback inhibition mechanism may be used to describe the spacing of these sprouts with the inhibitor being produced by breakdown of the existing vessel's basement membrane. Finally, we have developed a stochastic model of blood vessel growth and anastomosis in three dimensions. The model has been implemented in C++, includes an openGL interface, and uses a novel algorithm for calculating proximity of the line segments representing a growing vessel. This choice of programming language and graphics interface allows for near-simultaneous calculation and visualisation of blood vessel networks using a contemporary personal computer. In addition the visualised results may be transformed interactively, and drop-down menus facilitate changes in the parameter values. Visualisation of results is of vital importance in the communication of mathematical information to a wide audience, and we aim to incorporate this philosophy in the thesis. As biological research further uncovers the intriguing processes involved in tumourinduced angiogenesis, we conclude with a comment from mathematical biologist Jim Murray, Mathematical biology is : : : the most exciting modern application of mathematics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reliable pollutant build-up prediction plays a critical role in the accuracy of urban stormwater quality modelling outcomes. However, water quality data collection is resource demanding compared to streamflow data monitoring, where a greater quantity of data is generally available. Consequently, available water quality data sets span only relatively short time scales unlike water quantity data. Therefore, the ability to take due consideration of the variability associated with pollutant processes and natural phenomena is constrained. This in turn gives rise to uncertainty in the modelling outcomes as research has shown that pollutant loadings on catchment surfaces and rainfall within an area can vary considerably over space and time scales. Therefore, the assessment of model uncertainty is an essential element of informed decision making in urban stormwater management. This paper presents the application of a range of regression approaches such as ordinary least squares regression, weighted least squares Regression and Bayesian Weighted Least Squares Regression for the estimation of uncertainty associated with pollutant build-up prediction using limited data sets. The study outcomes confirmed that the use of ordinary least squares regression with fixed model inputs and limited observational data may not provide realistic estimates. The stochastic nature of the dependent and independent variables need to be taken into consideration in pollutant build-up prediction. It was found that the use of the Bayesian approach along with the Monte Carlo simulation technique provides a powerful tool, which attempts to make the best use of the available knowledge in the prediction and thereby presents a practical solution to counteract the limitations which are otherwise imposed on water quality modelling.