106 resultados para Step-by-step
Resumo:
This paper presents an approach to predict the operating conditions of machine based on classification and regression trees (CART) and adaptive neuro-fuzzy inference system (ANFIS) in association with direct prediction strategy for multi-step ahead prediction of time series techniques. In this study, the number of available observations and the number of predicted steps are initially determined by using false nearest neighbor method and auto mutual information technique, respectively. These values are subsequently utilized as inputs for prediction models to forecast the future values of the machines’ operating conditions. The performance of the proposed approach is then evaluated by using real trending data of low methane compressor. A comparative study of the predicted results obtained from CART and ANFIS models is also carried out to appraise the prediction capability of these models. The results show that the ANFIS prediction model can track the change in machine conditions and has the potential for using as a tool to machine fault prognosis.
Resumo:
A better understanding of the behaviour of prepared cane and bagasse, especially the ability to model the mechanical behaviour of bagasse as it is squeezed in a milling unit to extract juice, would help identify how to improve the current milling process; for example to reduce final bagasse moisture. Previous investigations have proven with certainty that juice flow through bagasse obeys Darcy’s permeability law, that the grip of the rough surface of the grooves on the bagasse can be represented by the Mohr- Coulomb failure criterion for soils, and that the internal mechanical behaviour of the bagasse can be represented by critical state behaviour similar to that of sand and clay. Current Finite Element Models (FEM) available in commercial software have adequate permeability models. However, commercial software does not contain an adequate mechanical model for bagasse. Progress has been made in the last ten years towards implementing a mechanical model for bagasse in finite element software code. This paper builds on that progress and carries out a further step towards obtaining an adequate material model. In particular, the prediction of volume change during shearing of normally consolidated final bagasse is addressed.
Resumo:
Introduction: The ability to regulate joint stiffness and coordinate movement during landing when impaired by muscle fatigue has important implications for knee function. Unfortunately, the literature examining fatigue effects on landing mechanics suffers from a lack of consensus. Inconsistent results can be attributed to variable fatigue models, as well as grouping variable responses between individuals when statistically detecting differences between conditions. There remains a need to examine fatigue effects on knee function during landing with attention to these methodological limitations. Aim: The purpose of this study therefore, was to examine the effects of isokinetic fatigue on pre-impact muscle activity and post-impact knee mechanics during landing using singlesubject analysis. Methodology: Sixteen male university students (22.6+3.2 yrs; 1.78+0.07 m; 75.7+6.3 kg) performed maximal concentric and eccentric knee extensions in a reciprocal manner on an isokinetic dynamometer and step-landing trials on 2 occasions. On the first occasion each participant performed 20 step-landing trials from a knee-high platform followed by 75 maximal contractions on the isokinetic dynamometer. The isokinetic data was used to calculate the operational definition of fatigue. On the second occasion, with a minimum rest of 14 days, participants performed 2 sets of 20 step landing trials, followed by isokinetic exercise until the operational definition of fatigue was met and a final post-fatigue set of 20 step-landing trials. Results: Single-subject analyses revealed that isokinetic fatigue of the quadriceps induced variable responses in pre impact activation of knee extensors and flexors (frequency, onset timing and amplitude) and post-impact knee mechanics(stiffness and coordination). In general however, isokinetic fatigue induced sig nificant (p<0.05) reductions in quadriceps activation frequency, delayed onset and increased amplitude. In addition, knee stiffness was significantly (p<0.05) increased in some individuals, as well as impaired sagittal coordination. Conclusions: Pre impact activation and post-impact mechanics were adjusted in patterns that were unique to the individual, which could not be identified using traditional group-based statistical analysis. The results suggested that individuals optimised knee function differently to satisfy competing demands, such as minimising energy expenditure, as well as maximising joint stability and sensory information.
Resumo:
Introduction: Evidence concerning the alteration of knee function during landing suffers from a lack of consensus. This uncertainty can be attributed to methodological flaws, particularly in relation to the statistical analysis of variable human movement data. Aim: The aim of this study was to compare single-subject and group analysis in quantifying alterations in the magnitude and within-participant variability of knee mechanics during a step landing task. Methods: A group of healthy men (N = 12) stepped-down from a knee-high platform for 60 consecutive trials, each trial separated by a 1-minute rest. The magnitude and within-participant variability of sagittal knee stiffness and coordination of the landing leg during the immediate postimpact period were evaluated. Coordination of the knee was quantified in the sagittal plane by calculating the mean absolute relative phase of sagittal shank and thigh motion (MARP1) and between knee rotation and knee flexion (MARP2). Changes across trials were compared between both group and single-subject statistical analyses. Results: The group analysis detected significant reductions in MARP1 magnitude. However, the single-subject analyses detected changes in all dependent variables, which included increases in variability with task repetition. Between-individual variation was also present in the timing, size and direction of alterations to task repetition. Conclusion: The results have important implications for the interpretation of existing information regarding the adaptation of knee mechanics to interventions such as fatigue, footwear or landing height. It is proposed that a familiarisation session be incorporated in future experiments on a single-subject basis prior to an intervention.
Resumo:
This short article summarises some of the proposed reforms to surrogacy laws in Queensland, suggested by the Liberal National Party in 2012. The paper outlines some of the main objections that could be voiced in response to the proposed changes to the law.
Resumo:
3D models of long bones are being utilised for a number of fields including orthopaedic implant design. Accurate reconstruction of 3D models is of utmost importance to design accurate implants to allow achieving a good alignment between two bone fragments. Thus for this purpose, CT scanners are employed to acquire accurate bone data exposing an individual to a high amount of ionising radiation. Magnetic resonance imaging (MRI) has been shown to be a potential alternative to computed tomography (CT) for scanning of volunteers for 3D reconstruction of long bones, essentially avoiding the high radiation dose from CT. In MRI imaging of long bones, the artefacts due to random movements of the skeletal system create challenges for researchers as they generate inaccuracies in the 3D models generated by using data sets containing such artefacts. One of the defects that have been observed during an initial study is the lateral shift artefact occurring in the reconstructed 3D models. This artefact is believed to result from volunteers moving the leg during two successive scanning stages (the lower limb has to be scanned in at least five stages due to the limited scanning length of the scanner). As this artefact creates inaccuracies in the implants designed using these models, it needs to be corrected before the application of 3D models to implant design. Therefore, this study aimed to correct the lateral shift artefact using 3D modelling techniques. The femora of five ovine hind limbs were scanned with a 3T MRI scanner using a 3D vibe based protocol. The scanning was conducted in two halves, while maintaining a good overlap between them. A lateral shift was generated by moving the limb several millimetres between two scanning stages. The 3D models were reconstructed using a multi threshold segmentation method. The correction of the artefact was achieved by aligning the two halves using the robust iterative closest point (ICP) algorithm, with the help of the overlapping region between the two. The models with the corrected artefact were compared with the reference model generated by CT scanning of the same sample. The results indicate that the correction of the artefact was achieved with an average deviation of 0.32 ± 0.02 mm between the corrected model and the reference model. In comparison, the model obtained from a single MRI scan generated an average error of 0.25 ± 0.02 mm when compared with the reference model. An average deviation of 0.34 ± 0.04 mm was seen when the models generated after the table was moved were compared to the reference models; thus, the movement of the table is also a contributing factor to the motion artefacts.
Resumo:
Several approaches have been introduced in literature for active noise control (ANC) systems. Since FxLMS algorithm appears to be the best choice as a controller filter, researchers tend to improve performance of ANC systems by enhancing and modifying this algorithm. This paper proposes a new version of FxLMS algorithm. In many ANC applications an online secondary path modelling method using a white noise as a training signal is required to ensure convergence of the system. This paper also proposes a new approach for online secondary path modelling in feedfoward ANC systems. The proposed algorithm stops injection of the white noise at the optimum point and reactivate the injection during the operation, if needed, to maintain performance of the system. Benefiting new version of FxLMS algorithm and not continually injection of white noise makes the system more desirable and improves the noise attenuation performance. Comparative simulation results indicate effectiveness of the proposed approach.
Resumo:
Recent experiments [F. E. Pinkerton, M. S. Meyer, G. P. Meisner, M. P. Balogh, and J. J. Vajo, J. Phys. Chem. C 111, 12881 (2007) and J. J. Vajo and G. L. Olson, Scripta Mater. 56, 829 (2007)] demonstrated that the recycling of hydrogen in the coupled LiBH4/MgH2 system is fully reversible. The rehydrogenation of MgB2 is an important step toward the reversibility. By using ab initio density functional theory calculations, we found that the activation barrier for the dissociation of H2 are 0.49 and 0.58 eV for the B and Mg-terminated MgB2(0001) surface, respectively. This implies that the dissociation kinetics of H2 on a MgB2 (0001) surface should be greatly improved compared to that in pure Mg materials. Additionally, the diffusion of dissociated H atom on the Mg-terminated MgB2(0001) surface is almost barrier-less. Our results shed light on the experimentally-observed reversibility and improved kinetics for the coupled LiBH4/MgH2 system.
Resumo:
The need for native Information Systems (IS) theories has been discussed by several prominent scholars. Contributing to their conjectural discussion, this research moves towards theorizing IS success as a native theory for the discipline. Despite being one of the most cited scholarly works to-date, IS success of DeLone and McLean (1992) has been criticized by some for lacking focus on the theoretical approach. Following theory development frameworks, this study improves the theoretical standing of IS success by minimizing interaction and inconsistency. The empirical investigation of theorizing IS success includes 1396 respondents, gathered through six surveys and a case study. The respondents represent 70 organisations, multiple Information Systems, and both private and public sector organizations.
Resumo:
Multimedia communication capabilities are rapidly expanding, and visual information is easily shared electronically, yet funding bodies still rely on paper grant proposal submissions. Incorporating modern technologies will streamline the granting process by increasing the fidelity of grant communication, improving the efficiency of review, and reducing the cost of the process.
Resumo:
Background Accelerometers have become one of the most common methods of measuring physical activity (PA). Thus, validity of accelerometer data reduction approaches remains an important research area. Yet, few studies directly compare data reduction approaches and other PA measures in free-living samples. Objective To compare PA estimates provided by 3 accelerometer data reduction approaches, steps, and 2 self-reported estimates: Crouter's 2-regression model, Crouter's refined 2-regression model, the weighted cut-point method adopted in the National Health and Nutrition Examination Survey (NHANES; 2003-2004 and 2005-2006 cycles), steps, IPAQ, and 7-day PA recall. Methods A worksite sample (N = 87) completed online-surveys and wore ActiGraph GT1M accelerometers and pedometers (SW-200) during waking hours for 7 consecutive days. Daily time spent in sedentary, light, moderate, and vigorous intensity activity and percentage of participants meeting PA recommendations were calculated and compared. Results Crouter's 2-regression (161.8 +/- 52.3 minutes/day) and refined 2-regression (137.6 +/- 40.3 minutes/day) models provided significantly higher estimates of moderate and vigorous PA and proportions of those meeting PA recommendations (91% and 92%, respectively) as compared with the NHANES weighted cut-point method (39.5 +/- 20.2 minutes/day, 18%). Differences between other measures were also significant. Conclusions When comparing 3 accelerometer cut-point methods, steps, and self-report measures, estimates of PA participation vary substantially.
Resumo:
This feature article introduces a deterministic approach for the rapid, single-step, direct synthesis of metal oxide nanowires. This approach is based on the exposure of thin metal samples to reactive oxygen plasmas and does not require any intervening processing or external substrate heating. The critical roles of the reactive oxygen plasmas, surface processes, and plasma-surface interactions that enable this growth are critically examined by using a deterministic viewpoint. The essentials of the experimental procedures and reactor design are presented and related to the key process requirements. The nucleation and growth kinetics is discussed for typical solid-liquid-solid and vapor-solid-solid mechanisms related to the synthesis of the oxide nanowires of metals with low (Ga, Cd) and high (Fe) melting points, respectively. Numerical simulations are focused on the possibility to predict the nanowire nucleation points through the interaction of the plasma radicals and ions with the nanoscale morphological features on the surface, as well as to control the localized 'hot spots' that in turn determine the nanowire size and shape. This generic approach can be applied to virtually any oxide nanoscale system and further confirms the applicability of the plasma nanoscience approaches for deterministic nanoscale synthesis and processing.
Resumo:
The unique properties of graphene and carbon nanotubes made them the most promising nanomaterials attracting enormous attention, due to the prospects for applications in various nanodevices, from nanoelectronics to sensors and energy conversion devices. Here we report on a novel deterministic, single-step approach to simultaneous production and magnetic separation of graphene flakes and carbon nanotubes in an arc discharge by splitting the high-temperature growth and low-temperature separation zones using a non-uniform magnetic field and tailor-designed catalyst alloy, and depositing nanotubes and graphene in different areas. Our results are very relevant to the development of commercially-viable, single-step production of bulk amounts of high-quality graphene.
Resumo:
The human right to water has recently been recognised by both the United Nations General Assembly and the Human Rights Council. As the mining industry interacts with water on multiple levels, it is important that these interactions respect the human right to water. Currently, a disconnect exists between mine site water management practices and the recognition of water from a human rights perspective. The Minerals Council of Australia (MCA) Water Accounting Framework (WAF) has previously been used to strengthen the connection between water management and human rights. This article extends this connection through the use of a Social Water Assessment Protocol (SWAP). The SWAP is scoping tool consisting of a set of questions classified into taxonomic themes under leading topics with suggested sources of data that enable mine sites to better understand the local water context in which they operate. Three of the themes contained in the SWAP – gender, Indigenous peoples and health – are discussed to demonstrate how the protocol may be useful in assisting mining companies to consider their impacts on the human right to water.
Resumo:
The availability of synthetic peptides has paved the way for their use in tailor-made interactions with biomolecules. In this study, a 16mer LacI-based peptide was used as an affinity ligand to examine the scale up feasibility for plasmid DNA purification. First, the peptide was designed and characterized for the affinity purification of lacO containing plasmid DNA, to be employed as a high affinity ligand for the potential capturing of plasmid DNA in a single unit operation. It was found there were no discernible interactions with a control plasmid that did not encode the lacO nucleotide sequence. The dissociation equilibrium constant of the binding between the 16mer peptide and target pUC19 was 5.0 ± 0.5 × 10-8 M as assessed by surface plasmon resonance. This selectivity and moderated affinity indicate that the 16mer is suitable for the adsorption and chromatographic purification of plasmid DNA. The suitability of this peptide was then evaluated using a chromatography system with the 16mer peptide immobilized to a customized monolith to purify plasmid DNA, obtaining preferential purification of supercoiled pUC19. The results demonstrate the applicability of peptide-monolith supports to scale up the purification process for plasmid DNA using designed ligands via a biomimetic approach.