342 resultados para Special purpose vehicles.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Designing trajectories for a submerged rigid body motivates this paper. Two approaches are addressed: the time optimal approach and the motion planning ap- proach using concatenation of kinematic motions. We focus on the structure of singular extremals and their relation to the existence of rank-one kinematic reduc- tions; thereby linking the optimization problem to the inherent geometric frame- work. Using these kinematic reductions, we provide a solution to the motion plan- ning problem in the under-actuated scenario, or equivalently, in the case of actuator failures. We finish the paper comparing a time optimal trajectory to one formed by concatenation of pure motions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trajectory design for Autonomous Underwater Vehicles (AUVs) is of great importance to the oceanographic research community. Intelligent planning is required to maneuver a vehicle to high-valued locations for data collection. We consider the use of ocean model predictions to determine the locations to be visited by an AUV, which then provides near-real time, in situ measurements back to the model to increase the skill of future predictions. The motion planning problem of steering the vehicle between the computed waypoints is not considered here. Our focus is on the algorithm to determine relevant points of interest for a chosen oceanographic feature. This represents a first approach to an end to end autonomous prediction and tasking system for aquatic, mobile sensor networks. We design a sampling plan and present experimental results with AUV retasking in the Southern California Bight (SCB) off the coast of Los Angeles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main focus of this paper is on the motion planning problem for an under-actuated, submerged, Omni-directional autonomous vehicle. Underactuation is extremely important to consider in ocean research and exploration. Battery failure, actuator malfunction and electronic shorts are a few reasons that may cause the vehicle to lose direct control of one or more degrees-of-freedom. Underactuation is also critical to understand when designing vehicles for specific tasks, such as torpedo-shaped vehicles. An under-actuated vehicle is less controllable, and hence, the motion planning problem is more difficult. Here, we present techniques based on geometric control to provide solutions to the under-actuated motion planning problem for a submerged underwater vehicle. Our results are validated with experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autonomous underwater vehicles (AUVs) are increasingly used, both in military and civilian applications. These vehicles are limited mainly by the intelligence we give them and the life of their batteries. Research is active to extend vehicle autonomy in both aspects. Our intent is to give the vehicle the ability to adapt its behavior under different mission scenarios (emergency maneuvers versus long duration monitoring). This involves a search for optimal trajectories minimizing time, energy or a combination of both. Despite some success stories in AUV control, optimal control is still a very underdeveloped area. Adaptive control research has contributed to cost minimization problems, but vehicle design has been the driving force for advancement in optimal control research. We look to advance the development of optimal control theory by expanding the motions along which AUVs travel. Traditionally, AUVs have taken the role of performing the long data gathering mission in the open ocean with little to no interaction with their surroundings, MacIver et al. (2004). The AUV is used to find the shipwreck, and the remotely operated vehicle (ROV) handles the exploration up close. AUV mission profiles of this sort are best suited through the use of a torpedo shaped AUV, Bertram and Alvarez (2006), since straight lines and minimal (0 deg - 30 deg) angular displacements are all that are necessary to perform the transects and grid lines for these applications. However, the torpedo shape AUV lacks the ability to perform low-speed maneuvers in cluttered environments, such as autonomous exploration close to the seabed and around obstacles, MacIver et al. (2004). Thus, we consider an agile vehicle capable of movement in six degrees of freedom without any preference of direction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper serves as a first study on the implementation of control strategies developed using a kinematic reduction onto test bed autonomous underwater vehicles (AUVs). The equations of motion are presented in the framework of differential geometry, including external dissipative forces, as a forced affine connection control system. We show that the hydrodynamic drag forces can be included in the affine connection, resulting in an affine connection control system. The definitions of kinematic reduction and decoupling vector field are thus extended from the ideal fluid scenario. Control strategies are computed using this new extension and are reformulated for implementation onto a test-bed AUV. We compare these geometrically computed controls to time and energy optimal controls for the same trajectory which are computed using a previously developed algorithm. Through this comparison we are able to validate our theoretical results based on the experiments conducted using the time and energy efficient strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From Pontryagin’s Maximum Principle to the Duke Kahanamoku Aquatic Complex; we develop the theory and generate implementable time efficient trajectories for a test-bed autonomous underwater vehicle (AUV). This paper is the beginning of the journey from theory to implementation. We begin by considering pure motion trajectories and move into a rectangular trajectory which is a concatenation of pure surge and pure sway. These trajectories are tested using our numerical model and demonstrated by our AUV in the pool. In this paper we demonstrate that the above motions are realizable through our method, and we gain confidence in our numerical model. We conclude that using our current techniques, implementation of time efficient trajectories is likely to succeed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we are concerned with the practical implementation of time optimal numerical techniques on underwater vehicles. We briefly introduce the model of underwater vehicle we consider and present the parameters for the test bed ODIN (Omni-Directional Intelligent Navigator). Then we explain the numerical method used to obtain time optimal trajectories with a structure suitable for the implementation. We follow this with a discussion on the modifications to be made considering the characteristics of ODIN. Finally, we illustrate our computations with some experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The number of children with special health care needs surviving infancy and attending school has been increasing. Due to their health status, these children may be at risk of low social-emotional and learning competencies (e.g., Lightfoot, Mukherjee, & Sloper, 2000; Zehnder, Landolt, Prchal, & Vollrath, 2006). Early social problems have been linked to low levels of academic achievement (Ladd, 2005), inappropriate behaviours at school (Shiu, 2001) and strained teacher-child relationships (Blumberg, Carle, O‘Connor, Moore, & Lippmann, 2008). Early learning difficulties have been associated with mental health problems (Maughan, Rowe, Loeber, & Stouthamer-Loeber, 2003), increased behaviour issues (Arnold, 1997), delinquency (Loeber & Dishion, 1983) and later academic failure (Epstein, 2008). Considering the importance of these areas, the limited research on special health care needs in social-emotional and learning domains is a factor driving this research. The purpose of the current research is to investigate social-emotional and learning competence in the early years for Australian children who have special health care needs. The data which informed this thesis was from Growing up in Australia: The Longitudinal Study of Australian Children. This is a national, longitudinal study being conducted by the Commonwealth Department of Families, Housing, Community Services and Indigenous Affairs. The study has a national representative sample, with data collection occurring biennially, in 2004 (Wave 1), 2006 (Wave 2) and 2008 (Wave 3). Growing up in Australia uses a cross-sequential research design involving two cohorts, an Infant Cohort (0-1 at recruitment) and a Kindergarten Cohort (4-5 at recruitment). This study uses the Kindergarten Cohort, for which there were 4,983 children at recruitment. Three studies were conducted to address the objectives of this thesis. Study 1 used Wave 1 data to identify and describe Australian children with special health care needs. Children who identified as having special health care needs through the special health care needs screener were selected. From this, descriptive analyses were run. The results indicate that boys, children with low birth weight and children from families with low levels of maternal education are likely to be in the population of children with special health care needs. Further, these children are likely to be using prescription medications, have poor general health and are likely to have specific condition diagnoses. Study 2 used Wave 1 data to examine differences between children with special health care needs and their peers in social-emotional competence and learning competence prior to school. Children identified by the special health care needs screener were chosen for the case group (n = 650). A matched case control group of peers (n = 650), matched on sex, cultural and linguistic diversity, family socioeconomic position and age, were the comparison group. Social-emotional competence was measured through Social/Emotional Domain scores taken from the Growing up in Australia Outcome Index, with learning competence measured through Learning Domain scores. Results suggest statistically significant differences in scores between the two groups. Children with special health care needs have lower levels of social-emotional and learning competence prior to school compared to their peers. Study 3 used Wave 1 and Wave 2 data to examine the relationship between special health care needs at Wave 1 and social-emotional competence and learning competence at Wave 2, as children started school. The sample for this study consisted of children in the Kindergarten Cohort who had teacher data at Wave 2. Results from multiple regression models indicate that special health care needs prior to school (Wave 1) significantly predicts social-emotional competence and learning competence in the early years of school (Wave 2). These results indicate that having special health care needs prior to school is a risk factor for the social-emotional and learning domains in the early years of school. The results from these studies give valuable insight into Australian children with special health care needs and their social-emotional and learning competence in the early years. The Australia population of children with special health care needs were primarily male children, from families with low maternal education, were likely to be of poor health and taking prescription medications. It was found that children with special health care needs were likely to have lower social-emotional competence and learning competence prior to school compared to their peers. Results indicate that special health care needs prior to school were predictive of lower social-emotional and learning competencies in the early years of school. More research is required into this unique population and their competencies over time. However, the current research provides valuable insight into an under researched 'at risk' population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is directed towards providing an answer to the question, ”Can you control the trajectory of a Lagrangian float?” Being a float that has minimal actuation (only buoyancy control), their horizontal trajectory is dictated through drifting with ocean currents. However, with the appropriate vertical actuation and utilising spatio-temporal variations in water speed and direction, we show here that broad controllabilty results can be met such as waypoint following to keep a float inside of a bay or out of a designated region. This paper extends theory experimen- tally evaluted on horizontally actuated Autonomous Underwater Vehicles (AUVs) for trajectory control utilising ocean forecast models and presents an initial investi- gation into the controllability of these minimally actuated drifting AUVs. Simulated results for offshore coastal and within highly dynamic tidal bays illustrate two tech- niques with the promise for an affirmative answer to the posed question above.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A priority when designing control strategies for autonomous underwater vehicles is to emphasize their cost of implementation on a real vehicle. Indeed, due to the vehicles' design and the actuation modes usually under consideration for underwater plateforms the number of actuator switchings must be kept to a small value to insure feasibility and precision. This is the main objective of the algorithm presented in this paper. The theory is illustrated on two examples, one is a fully actuated underwater vehicle capable of motion in six-degrees-of freedom and one is minimally actuated with control motions in the vertical plane only.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This series of research vignettes is aimed at sharing current and interesting research findings from our team and other international researchers. In this vignette, Dr Martie-Louise Verreynne from the University of Queensland Business School summaries the findings from a paper written in conjunction with Sarel Gronum and Tim Kastelle from the UQ Business School that examined if networking really contributes to small firms' bottom line. Their findings show that unless networks are used for productive means, efforts to cultivate and maintain them may be wasteful.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Establishing a persistent presence in the ocean with an Autonomous Underwater Vehicle capable of observing temporal variability of large-scale ocean processes requires a unique sensor platform. In this paper, we examine the utility of Lagrangian profiling floats for such extended deployments. We propose a strategy that utilizes ocean model predictions to facilitate a basic level of autonomy to achieve general control of this minimally-actuated underwater vehicle. We extend experimentally validated techniques for utilising ocean current models to control under-actuated autonomous underwater vehicles by presenting this investigation into the application of these methods on profiling floats. With the appropriate vertical actuation, and utilising spatiotemporal variations in water speed and direction, we show that broad controllability results can be met. First, we apply an A* planner to a local controllability map generated from predictions of ocean currents. This computes a path between start and goal waypoints that has the highest likelihood of successful execution over a given duration. The computed depth plan is generated with a model predictive controller, and selects the depths for the vehicle so that ambient currents guide it toward the goal. Mission constraints are included to simulate and motivate a practical data collection mission. Results are presented in simulation for a mission off the coast of Los Angeles, CA USA, that show surprising results in the ability of a drifting vehicle to maintain a prescribed course and reach a desired location.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A priority when designing control strategies for autonomous underwater vehicles is to emphasize their cost of implementation on a real vehicle and at the same time to minimize a prescribed criterion such as time, energy, payload or combination of those. Indeed, the major issue is that due to the vehicles' design and the actuation modes usually under consideration for underwater platforms the number of actuator switchings must be kept to a small value to ensure feasibility and precision. This constraint is typically not verified by optimal trajectories which might not even be piecewise constants. Our goal is to provide a feasible trajectory that minimizes the number of switchings while maintaining some qualities of the desired trajectory, such as optimality with respect to a given criterion. The one-sided Lipschitz constant is used to derive theoretical estimates. The theory is illustrated on two examples, one is a fully actuated underwater vehicle capable of motion in six degrees-of-freedom and one is minimally actuated with control motions constrained to the vertical plane.