187 resultados para SHAPES
Resumo:
Genetic analysis of diffusion tensor images (DTI) shows great promise in revealing specific genetic variants that affect brain integrity and connectivity. Most genetic studies of DTI analyze voxel-based diffusivity indices in the image space (such as 3D maps of fractional anisotropy) and overlook tract geometry. Here we propose an automated workflow to cluster fibers using a white matter probabilistic atlas and perform genetic analysis on the shape characteristics of fiber tracts. We apply our approach to large study of 4-Tesla high angular resolution diffusion imaging (HARDI) data from 198 healthy, young adult twins (age: 20-30). Illustrative results show heritability for the shapes of several major tracts, as color-coded maps.
Resumo:
Random walk models are often used to interpret experimental observations of the motion of biological cells and molecules. A key aim in applying a random walk model to mimic an in vitro experiment is to estimate the Fickian diffusivity (or Fickian diffusion coefficient),D. However, many in vivo experiments are complicated by the fact that the motion of cells and molecules is hindered by the presence of obstacles. Crowded transport processes have been modeled using repeated stochastic simulations in which a motile agent undergoes a random walk on a lattice that is populated by immobile obstacles. Early studies considered the most straightforward case in which the motile agent and the obstacles are the same size. More recent studies considered stochastic random walk simulations describing the motion of an agent through an environment populated by obstacles of different shapes and sizes. Here, we build on previous simulation studies by analyzing a general class of lattice-based random walk models with agents and obstacles of various shapes and sizes. Our analysis provides exact calculations of the Fickian diffusivity, allowing us to draw conclusions about the role of the size, shape and density of the obstacles, as well as examining the role of the size and shape of the motile agent. Since our analysis is exact, we calculateDdirectly without the need for random walk simulations. In summary, we find that the shape, size and density of obstacles has a major influence on the exact Fickian diffusivity. Furthermore, our results indicate that the difference in diffusivity for symmetric and asymmetric obstacles is significant.
Resumo:
Many biological environments are crowded by macromolecules, organelles and cells which can impede the transport of other cells and molecules. Previous studies have sought to describe these effects using either random walk models or fractional order diffusion equations. Here we examine the transport of both a single agent and a population of agents through an environment containing obstacles of varying size and shape, whose relative densities are drawn from a specified distribution. Our simulation results for a single agent indicate that smaller obstacles are more effective at retarding transport than larger obstacles; these findings are consistent with our simulations of the collective motion of populations of agents. In an attempt to explore whether these kinds of stochastic random walk simulations can be described using a fractional order diffusion equation framework, we calibrate the solution of such a differential equation to our averaged agent density information. Our approach suggests that these kinds of commonly used differential equation models ought to be used with care since we are unable to match the solution of a fractional order diffusion equation to our data in a consistent fashion over a finite time period.
Resumo:
People increasingly communicate over multiple channels, such as SMS, email and IM. Choosing the channel for interaction is typically a considered action and shapes the message itself. In order to explore how people make sense of communication mediums and more generally, social group behaviour, we developed a multichannel communication prototype. Preliminary results indicate that multichannel communication was considered very useful in the group context even considering the increased quantity of messages while it was little used for person-to-person interaction.
Resumo:
This paper reports on the performance of 58 11 to 12-year-olds on a spatial visualization task and a spatial orientation task. The students completed these tasks and explained their thinking during individual interviews. The qualitative data were analysed to inform pedagogical content knowledge for spatial activities. The study revealed that “matching” or “matching and eliminating” were the typical strategies that students employed on these spatial tasks. However, errors in making associations between parts of the same or different shapes were noted. Students also experienced general difficulties with visual memory and language use to explain their thinking. The students’ specific difficulties in spatial visualization related to obscured items, the perspective used, and the placement and orientation of shapes.
Resumo:
There is much still to learn about how young children’s membership with peers shapes their constructions of moral and social obligations within everyday activities in the school playground. This paper investigates how a small group of girls, aged four to six years, account for their everyday social interactions in the playground. They were video-recorded as they participated in a pretend game of school. Several days later, a video-recorded excerpt of the interaction was shown to them and invited to comment on what was happening in the video. This conversation was audio-recorded. Drawing on a conversation analysis approach, this chapter shows that, despite their discontent and complaining about playing the game of school, the girls’ actions showed their continued orientation to the particular codes of the game, of ‘no going away’ and ‘no telling’. By making relevant these codes, jointly constructed by the girls during the interview, they managed each other’s continued participation within two arenas of action: the pretend, as a player in a pretend game of school; and the real, as a classroom member of a peer group. Through inferences to explicit and implicit codes of conduct, moral obligations were invoked as the girls attempted to socially exclude or build alliances with others, and enforce their own social position. As well, a shared history that the girls re-constructed has moral implications for present and future relationships. The girls oriented to the history as an interactional resource for accounting for their actions in the pretend game. This paper uncovers how children both participate in, and shape, their everyday social worlds through talk and interaction and the consequences a taken-for-granted activity such as playing school has for their moral and social positions in the peer group.
Resumo:
This paper reports on an empirically based study of the Queensland (Australia) health and fitness industry over 15 years (1993 -2008). This study traces the development of the new occupation of fitness instructor in a service industry which has evolved si nce the 1980s and is embedded in values of consumption and individualism. It is the new world of work. The data from the 1993 study was historically significant, capturing the conditions o f employment in an unregulated setting prior to the introduction of the first industrial a ward in that industry in 1994. Fitness workers bargained directly with employers over all a spects of the employment relationship without the constraints of industrial regulation or the presence of trade unions. The substantive outcomes of the employment relationship were a direct reflection of m anagerial prerogative and worker orientation and preference, and did not reflect the rewards and outcomes traditionally found in Australian workplaces. While the focus of the 1993 research was on exploring the employment relationship in a deregulated environment, an unusual phenomenon was identified: fitness workers happily trading-off what would be considere d standard working conditions for the opportunity to work (‘take the stage’). Since then, several streams of literature have evolved providing a new context for understanding this phenomenon in the fitness industry, including: the sociology of the body (Shilling 1993; Turner 1996); emotional (Hochschild 1984) and aesthetic labour (Warhurst et al 2000); the so cial relations of production and space (Lefebvre 1991; Moss 1995); body history (Helps 2007); the sociology of consumption (Saunders 1988; Baudrillard 1998; Ritzer 2004); and work identity (Du Gay 1996; Strangleman 2004). The 2008 survey instrument replicated the 1993 study but was additionally informed b y the new literature. Surveys were sent to 310 commercial fitness centres and 4,800 fitness workers across Queensland. Worker orientation appears unchanged, and industry working conditions still seem atypical despite regulation si nce 1994. We argue that for many fitness workers the goal is to gain access to the fitness centre economy. For this they are willing to trade-off standard conditions of employment, and exchange traditional employm ent rewards for m ore intrinsic psycho-social rewards gained the through e xp o sure of their physical capital (Bourdieu 1984) o r bo dily prowess to the adoration o f their gazing clients. Building on the tradition of emotional labour and aesthetic labour, this study introduces the concept of ocularcentric labour: a state in which labour’s quest for the psychosocial rewards gained from their own body image shapes the employment relationship. With ocularcentric labour the p sycho-social rewards have greater value for the worker than ‘hard’, core conditions of employment, and are a significant factor in bargaining and outcomes, often substituting fo r direct earnings. The wo rkforce profile (young, female, casual) and their expectations (psycho-social rewards of ado ration and celebrity) challenge traditional trade unions in terms of what they can deliver, given the fitness workers’ willingness to trade-off minimum conditions, hard-won by unions.
Resumo:
Our society operates in such a way as to put whiteness at the center of everything, including individual consciousness--so much so that we seldom question the centrality of white- ness, and most people, on hearing 'race', hear 'black'. That is, whiteness is treated as the norm, against which all differences are measured. 1 Race shapes white women's lives. In the same way that both men's and women's lives are shaped by their gender, and that both heterosexual and lesbian women's experiences in the world are marked by their sexuality, white people and people of color live racially structured lives. In other words, any system of differentiation shapes those on whom it bestows privi- lege as well as those it oppresses. White people are 'raced' just as men are 'gendered'. 2
Resumo:
Politics has been described as a man’s game and a man’s place. Further, the design of houses of politics also embeds this dominant masculine ethos. Traditional Chambers have been large with only limited seating arrangements ensuring that only privileged elite can participate and both officials and the public are located at some distance and separate from the elected officials. Such a Chamber ensures that Members need to face each other and the dominant interaction is adversarial. Within this system however, women have been able to carve out new spaces, or use existing ones in different ways, to become more involved with the mechanisms of parliament and provide alternative routes to leadership. In doing so, they have introduced elements of the private domain (nurturing, dialogue and inclusion) to the public domain. The way in which space is used is fundamental and its treatment has consequences for individuals, organizations and societies (Clegg and Kornberger 2006). Dale’s (2005) work emphasises the social character of architecture which recognises the impact which it has on the behaviours of individuals and nowhere is this more pertinent than the way the Australian Parliament House operates. This paper draws on the experiences of Australian parliamentarians to examine the way in which the new Australian Parliament House shapes the way in which the Australian political cultural norms and practices are shaped and maintained. It also seeks to explore the way the Members of Parliament (MPs) experience these spaces and how some MPs have been able to bring new ways of utilising the space to ensure it is more accommodating to the men and women who inhabit this building at the apex of Australia’s political life. In doing so, such MPs are seeking to ensure that the practices and processes of Australia’s political system are reflective of the men and women who inhabit this national institution in the beginning of the 21st century.
Resumo:
Investigated human visual processing of simple two-colour patterns using a delayed match to sample paradigm with positron emission tomography (PET). This study is unique in that the authors specifically designed the visual stimuli to be the same for both pattern and colour recognition with all patterns being abstract shapes not easily verbally coded composed of two-colour combinations. The authors did this to explore those brain regions required for both colour and pattern processing and to separate those areas of activation required for one or the other. 10 right-handed male volunteers aged 18–35 yrs were recruited. The authors found that both tasks activated similar occipital regions, the major difference being more extensive activation in pattern recognition. A right-sided network that involved the inferior parietal lobule, the head of the caudate nucleus, and the pulvinar nucleus of the thalamus was common to both paradigms. Pattern recognition also activated the left temporal pole and right lateral orbital gyrus, whereas colour recognition activated the left fusiform gyrus and several right frontal regions.
Resumo:
We developed orthogonal least-squares techniques for fitting crystalline lens shapes, and used the bootstrap method to determine uncertainties associated with the estimated vertex radii of curvature and asphericities of five different models. Three existing models were investigated including one that uses two separate conics for the anterior and posterior surfaces, and two whole lens models based on a modulated hyperbolic cosine function and on a generalized conic function. Two new models were proposed including one that uses two interdependent conics and a polynomial based whole lens model. The models were used to describe the in vitro shape for a data set of twenty human lenses with ages 7–82 years. The two-conic-surface model (7 mm zone diameter) and the interdependent surfaces model had significantly lower merit functions than the other three models for the data set, indicating that most likely they can describe human lens shape over a wide age range better than the other models (although with the two-conic-surfaces model being unable to describe the lens equatorial region). Considerable differences were found between some models regarding estimates of radii of curvature and surface asphericities. The hyperbolic cosine model and the new polynomial based whole lens model had the best precision in determining the radii of curvature and surface asphericities across the five considered models. Most models found significant increase in anterior, but not posterior, radius of curvature with age. Most models found a wide scatter of asphericities, but with the asphericities usually being positive and not significantly related to age. As the interdependent surfaces model had lower merit function than three whole lens models, there is further scope to develop an accurate model of the complete shape of human lenses of all ages. The results highlight the continued difficulty in selecting an appropriate model for the crystalline lens shape.
Resumo:
Changes in load characteristics, deterioration with age, environmental influences and random actions may cause local or global damage in structures, especially in bridges, which are designed for long life spans. Continuous health monitoring of structures will enable the early identification of distress and allow appropriate retrofitting in order to avoid failure or collapse of the structures. In recent times, structural health monitoring (SHM) has attracted much attention in both research and development. Local and global methods of damage assessment using the monitored information are an integral part of SHM techniques. In the local case, the assessment of the state of a structure is done either by direct visual inspection or using experimental techniques such as acoustic emission, ultrasonic, magnetic particle inspection, radiography and eddy current. A characteristic of all these techniques is that their application requires a prior localization of the damaged zones. The limitations of the local methodologies can be overcome by using vibration-based methods, which give a global damage assessment. The vibration-based damage detection methods use measured changes in dynamic characteristics to evaluate changes in physical properties that may indicate structural damage or degradation. The basic idea is that modal parameters (notably frequencies, mode shapes, and modal damping) are functions of the physical properties of the structure (mass, damping, and stiffness). Changes in the physical properties will therefore cause changes in the modal properties. Any reduction in structural stiffness and increase in damping in the structure may indicate structural damage. This research uses the variations in vibration parameters to develop a multi-criteria method for damage assessment. It incorporates the changes in natural frequencies, modal flexibility and modal strain energy to locate damage in the main load bearing elements in bridge structures such as beams, slabs and trusses and simple bridges involving these elements. Dynamic computer simulation techniques are used to develop and apply the multi-criteria procedure under different damage scenarios. The effectiveness of the procedure is demonstrated through numerical examples. Results show that the proposed method incorporating modal flexibility and modal strain energy changes is competent in damage assessment in the structures treated herein.
Resumo:
Browse > Journals> Automation Science and Enginee ...> Volume: 5 Issue: 3 Microassembly Fabrication of Tissue Engineering Scaffolds With Customized Design 4468741 abstract Han Zhang; Burdet, E.; Poo, A.N.; Hutmacher, D.W.; GE Global Res. Center Ltd., Shanghai This paper appears in: Automation Science and Engineering, IEEE Transactions on Issue Date: July 2008 Volume: 5 Issue:3 On page(s): 446 - 456 ISSN: 1545-5955 Digital Object Identifier: 10.1109/TASE.2008.917011 Date of Current Version: 02 July 2008 Sponsored by: IEEE Robotics and Automation Society Abstract This paper presents a novel technique to fabricate scaffold/cell constructs for tissue engineering by robotic assembly of microscopic building blocks (of volume 0.5$,times,$0.5$,times,$0.2 ${hbox{mm}}^{3}$ and 60 $mu {hbox{m}}$ thickness). In this way, it becomes possible to build scaffolds with freedom in the design of architecture, surface morphology, and chemistry. Biocompatible microparts with complex 3-D shapes were first designed and mass produced using MEMS techniques. Semi-automatic assembly was then realized using a robotic workstation with four degrees of freedom integrating a dedicated microgripper and two optical microscopes. Coarse movement of the gripper is determined by pattern matching in the microscopes images, while the operator controls fine positioning and accurate insertion of the microparts. Successful microassembly was demonstrated using SU-8 and acrylic resin microparts. Taking advantage of parts distortion and adhesion forces, which dominate at micro-level, the parts cleave together after assembly. In contrast to many current scaffold fabrication techniques, no heat, pressure, electrical effect, or toxic chemical reaction is involved, a critical condition for creating scaffolds with biological agents.
Resumo:
In this study, biometric and structural engineering tool have been used to examine a possible relationship within Chuaria–Tawuia complex and micro-FTIR (Fourier Transform Infrared Spectroscopy) analyses to understand the biological affinity of Chuaria circularis Walcott, collected from the Mesoproterozoic Suket Shales of the Vindhyan Supergroup and the Neoproterozoic Halkal Shales of the Bhima Group of peninsular India. Biometric analyses of well preserved carbonized specimens show wide variation in morphology and uni-modal distribution. We believe and demonstrate to a reasonable extent that C. circularis most likely was a part of Tawuia-like cylindrical body of algal origin. Specimens with notch/cleft and overlapping preservation, mostly recorded in the size range of 3–5 mm, are of special interest. Five different models proposed earlier on the life cycle of C. circularis are discussed. A new model, termed as ‘Hybrid model’ based on present multidisciplinary study assessing cylindrical and spherical shapes suggesting variable cell wall strength and algal affinity is proposed. This model discusses and demonstrates varied geometrical morphologies assumed by Chuaria and Tawuia, and also shows the inter-relationship of Chuaria–Tawuia complex. Structural engineering tool (thin walled pressure vessel theory) was applied to investigate the implications of possible geometrical shapes (sphere and cylinder), membrane (cell wall) stresses and ambient pressure environment on morphologically similar C. circularis and Tawuia. The results suggest that membrane stresses developed on the structures similar to Chuaria–Tawuia complex were directly proportional to radius and inversely proportional to the thickness in both cases. In case of hollow cylindrical structure, the membrane stresses in circumferential direction (hoop stress) are twice of the longitudinal direction indicating that rupture or fragmentation in the body of Tawuia would have occurred due to hoop stress. It appears that notches and discontinuities seen in some of the specimens of Chuaria may be related to rupture suggesting their possible location in 3D Chuaria. The micro-FTIR spectra of C. circularis are characterized by both aliphatic and aromatic absorption bands. The aliphaticity is indicated by prominent alkyl group bands between 2800–3000 and 1300–1500 cm−1. The prominent absorption signals at 700–900 cm−1 (peaking at 875 and 860 cm−1) are due to aromatic CH out of plane deformation. A narrow, strong band is centred at 1540 cm−1 which could be COOH band. The presence of strong aliphatic bands in FTIR spectra suggests that the biogeopolymer of C. circularis is of aliphatic nature. The wall chemistry indicates the presence of ‘algaenan’—a biopolymer of algae.
Resumo:
An Alternate Reality Game (ARG) is a unique experience that blurs the edges between our everyday lives and imagined game worlds. Players are invited to interact with each other and fictional characters using familiar tools such as emails, websites, telephones, and sometimes newspapers, radio and television. ARGs come in all shapes and sizes, tell a variety of different stories and inspire all kinds of interactions between people, their networks and the very streets in which they live. Some ARGs simply immerse you in fictional scenarios and indulge you in quirky challenges. While others reveal hidden histories of a city and teach us about important political causes. But the most exciting thing about ARGs is that they have the potential to inspire participants to imagine their everyday tools and places as resources for their own creative endeavors. Deb Polson will be presenting some of the most inspiring ARGs of recent years and revealing some of the design techniques that were used to create them. Most significantly Deb will discuss ways in which educators can imagine using ARGs as rich teaching tools that inspire collaborative learning and motivate students to engage in all kinds of subject matter.