289 resultados para RADIATION EFFECTS
Resumo:
The incidences of skin cancers resulting from chronic ultraviolet radiation (UVR) exposure are on the incline both in Australia and globally. Hence, the cellular and molecular pathways associated with UVR-induced photocarcinogenesis urgently need to be elucidated, in order to develop more robust preventative and treatment strategies against skin cancers. In vitro investigations into the effects of UVR (in particular the highly-mutagenic UVB wavelength) have, to date, mainly involved the use of cell culture and animal models. However, these models possess biological disparities to native skin, which to some extent have limited their relevance to the in vivo situation. To address this, we characterised a 3-dimensional, tissue-engineered human skin equivalent (HSE) model (consisting of primary human keratinocytes cultured on a dermal-derived scaffold) as a representation of a more physiologically-relevant platform to study keratinocyte responses to UVB. Significantly, we demonstrate that this model retains several important epidermal properties of native skin. Moreover, UVB-irradiation of the HSE constructs was shown to induce key markers of photodamage in the HSE keratinocytes, including the formation of cyclobutane pyrimidine dimers, the activation of apoptotic pathways, the accumulation of p53 and the secretion of inflammatory cytokines. Importantly, we also demonstrate that the UVB-exposed HSE constructs retain the capacity for epidermal repair and regeneration following photodamage. Together, our results demonstrate the potential of this skin equivalent model as a tool to study various aspects of the acute responses of human keratinocytes to UVB radiation damage.
Resumo:
Background Diagnosis and treatment of cancer can contribute to psychological distress and anxiety amongst patients. Evidence indicates that information giving can be beneficial in reducing patient anxiety, so oncology specific information may have a major impact on this patient group. This study investigates the effects of an orientation program on levels of anxiety and self-efficacy amongst newly registered cancer patients who are about to undergo chemotherapy and/or radiation therapy in the cancer care centre of a large tertiary Australian hospital. Methods The concept of interventions for orienting new cancer patients needs revisiting due to the dynamic health care system. Historically, most orientation programs at this cancer centre were conducted by one nurse. A randomised controlled trial has been designed to test the effectiveness of an orientation program with bundled interventions; a face-to-face program which includes introduction to the hospital facilities, introduction to the multi-disciplinary team and an overview of treatment side effects and self care strategies. The aim is to orientate patients to the cancer centre and to meet the health care team. We hypothesize that patients who receive this orientation will experience lower levels of anxiety and distress, and a higher level of self-efficacy. Discussion An orientation program is a common health care service provided by cancer care centres for new cancer patients. Such programs aim to give information to patients at the beginning of their encounter at a cancer care centre. It is clear in the literature that interventions that aim to improve self-efficacy in patients may demonstrate potential improvement in health outcomes. Yet, evidence on the effects of orientation programs for cancer patients on self-efficacy remains scarce, particularly with respect to the use of multidisciplinary team members. This paper presents the design of a randomised controlled trial that will evaluate the effects and feasibility of a multidisciplinary orientation program for new cancer patients.
Resumo:
The effects of radiation backscattered from the secondary collimators into the monitor chamber in an Elekta linac (producing 6 and 10 MV photon beams) are investigated using BEAMnrc Monte Carlo simulations. The degree and effects of this backscattered radiation are assessed by evaluating the changes to the calculated dose in the monitor chamber, and by determining a correction factor for those changes. Additionally, the fluency and energy characteristics of particles entering the monitor chamber from the downstream direction are evaluated by examining BEAMnrc phase-space data. It is shown that the proportion of particles backscattered into the monitor chamber is small (<0.35 %), for all field sizes studied. However, when the backscatter plate is removed from the model linac, these backscattered particles generate a noticeable increase in dose to the monitor chamber (up to approximate to 2.4 % for the 6 MV beam and up to 4.4 % for the 10 MV beam). With its backscatter plate in place, the Elekta linac (operating at 6 and 10 MV) is subject to negligible variation of monitor chamber dose with field size. At these energies, output variations in photon beams produced by the clinical Elekta linear accelerator can be attributed to head scatter alone. Corrections for field-size-dependence of monitor chamber dose are not necessary when running Monte Carlo simulations of the Elekta linac operating at 6 and 10 MV.
Resumo:
To assess the effects of any interventions which aim to prevent or manage radiation-induced skin reactions in people with cancer.
Resumo:
The effects of atomic oxygen (AO) and vacuum UV radiation simulating low Earth orbit conditions on two commercially available piezoelectric polymer films, poly(vinylidene fluoride) (PVDF) and poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE), have been studied. Surface erosion and pattern development are significant for both polymers. Erosion yields were determined as 2.8 � 10�24 cm3/atom for PVDF and 2.5 � 10�24 cm3/atom for P(VDF-TrFE). The piezoelectric properties of the residual material of both polymers were largely unchanged after exposure, although a slight shift in the Curie transition of the P(VDF-TrFE) was observed. A lightly cross-linked network was formed in the copolymer presumably because of penetrating vacuum ultraviolet (VUV) radiation, while the homopolymer remained uncross-linked. These differences were attributed to varying degrees of crystallinity and potentially greater absorption, and hence damage, of VUV radiation in P(VDFTrFE) compared with PVDF.
Resumo:
The radiation chemistry and the grafting of a fluoropolymer, poly(tetrafluoroethylene-coperfluoropropyl vinyl ether) (PFA), was investigated with the aim of developing a highly stable grafted support for use in solid phase organic chemistry (SPOC). A radiation-induced grafting method was used whereby the PFA was exposed to ionizing radiation to form free radicals capable of initiating graft copolymerization of styrene. To fully investigate this process, both the radiation chemistry of PFA and the grafting of styrene to PFA were examined. Radiation alone was found to have a detrimental effect on PFA when irradiated at 303 K. This was evident from the loss in the mechanical properties due to chain scission reactions. This meant that when radiation was used for the grafting reactions, the total radiation dose needed to be kept as low as possible. The radicals produced when PFA was exposed to radiation were examined using electron spin resonance spectroscopy. Both main-chain (–CF2–C.F–CF2-) and end-chain (–CF2–C.F2) radicals were identified. The stability of the majority of the main-chain radicals when the polymer was heated above the glass transition temperature suggested that they were present mainly in the crystalline regions of the polymer, while the end-chain radicals were predominately located in the amorphous regions. The radical yield at 77 K was lower than the radical yield at 303 K suggesting that cage recombination at low temperatures inhibited free radicals from stabilizing. High-speed MAS 19F NMR was used to identify the non-volatile products after irradiation of PFA over a wide temperature range. The major products observed over the irradiation temperature 303 to 633 K included new saturated chain ends, short fluoromethyl side chains in both the amorphous and crystalline regions, and long branch points. The proportion of the radiolytic products shifted from mainly chain scission products at low irradiation temperatures to extensive branching at higher irradiation temperatures. Calculations of G values revealed that net crosslinking only occurred when PFA was irradiated in the melt. Minor products after irradiation at elevated temperatures included internal and terminal double bonds and CF3 groups adjacent to double bonds. The volatile products after irradiation at 303 K included tetrafluoromethane (CF4) and oxygen-containing species from loss of the perfluoropropyl ether side chains of PFA as identified by mass spectrometry and FTIR spectroscopy. The chemical changes induced by radiation exposure were accompanied by changes in the thermal properties of the polymer. Changes in the crystallinity and thermal stability of PFA after irradiation were examined using DSC and TGA techniques. The equilibrium melting temperature of untreated PFA was 599 K as determined using a method of extrapolation of the melting temperatures of imperfectly formed crystals. After low temperature irradiation, radiation- induced crystallization was prevalent due to scission of strained tie molecules, loss of perfluoropropyl ether side chains, and lowering of the molecular weight which promoted chain alignment and hence higher crystallinity. After irradiation at high temperatures, the presence of short and long branches hindered crystallization, lowering the overall crystallinity. The thermal stability of the PFA decreased with increasing radiation dose and temperature due to the introduction of defect groups. Styrene was graft copolymerized to PFA using -radiation as the initiation source with the aim of preparing a graft copolymer suitable as a support for SPOC. Various grafting conditions were studied, such as the total dose, dose rate, solvent effects and addition of nitroxides to create “living” graft chains. The effect of dose rate was examined when grafting styrene vapour to PFA using the simultaneous grafting method. The initial rate of grafting was found to be independent of the dose rate which implied that the reaction was diffusion controlled. When the styrene was dissolved in various solvents for the grafting reaction, the graft yield was strongly dependent of the type and concentration of the solvent used. The greatest graft yield was observed when the solvent swelled the grafted layers and the substrate. Microprobe Raman spectroscopy was used to map the penetration of the graft into the substrate. The grafted layer was found to contain both poly(styrene) (PS) and PFA and became thicker with increasing radiation dose and graft yield which showed that grafting began at the surface and progressively penetrated the substrate as the grafted layer was swollen. The molecular weight of the grafted PS was estimated by measuring the molecular weight of the non-covalently bonded homopolymer formed in the grafted layers using SEC. The molecular weight of the occluded homopolymer was an order of magnitude greater than the free homopolymer formed in the surrounding solution suggesting that the high viscosity in the grafted regions led to long PS grafts. When a nitroxide mediated free radical polymerization was used, grafting occurred within the substrate and not on the surface due to diffusion of styrene into the substrate at the high temperatures needed for the reaction to proceed. Loading tests were used to measure the capacity of the PS graft to be functionialized with aminomethyl groups then further derivatized. These loading tests showed that samples grafted in a solution of styrene and methanol had superior loading capacity over samples graft using other solvents due to the shallow penetration and hence better accessibility of the graft when methanol was used as a solvent.
Resumo:
Patients undergoing radiation therapy for cancer face a series of challenges that require support from a multidisciplinary team which includes radiation oncology nurses. However, the specific contribution of nursing, and the models of care that best support the delivery of nursing interventions in the radiotherapy setting, is not well described. In this case study, the Interaction Model of Client Health Behaviour and the associated principles of person-centred care were incorporated into a new model of care that was implemented in one radiation oncology setting in Brisbane, Australia. The new model of care was operationalised through a Primary Nursing/Collaborative Practice framework. To evaluate the impact of the new model for patients and health professionals, multiple sources of data were collected from patients and clinical staff prior to, during, and 18 months following introduction of the practice redesign. One cohort of patients and clinical staff completed surveys incorporating measures of key outcomes immediately prior to implementation of the model, while a second cohort of patients and clinical staff completed these same surveys 18 months following introduction of the model. In-depth interviews were also conducted with nursing, medical and allied health staff throughout the implementation phase to obtain a more comprehensive account of the processes and outcomes associated with implementing such a model. From the patients’ perspectives, this study demonstrated that, although adverse effects of radiotherapy continue to affect patient well-being, patients continue to be satisfied with nursing care in this specialty, and that they generally reported high levels of functioning despite undergoing a curative course of radiotherapy. From the health professionals’ perspective, there was evidence of attitudinal change by nursing staff within the radiotherapy department which reflected a greater understanding and appreciation of a more person-centred approach to care. Importantly, this case study has also confirmed that a range of factors need to be considered when redesigning nursing practice in the radiotherapy setting, as the challenges associated with changing traditional practices, ensuring multidisciplinary approaches to care, and resourcing a new model were experienced. The findings from this study suggest that the move from a relatively functional approach to a person-centred approach in the radiotherapy setting has contributed to some improvements in the provision of individualised and coordinated patient care. However, this study has also highlighted that primary nursing may be limited in its approach as a framework for patient care unless it is supported by a whole team approach, an appropriate supportive governance model, and sufficient resourcing. Introducing such a model thus requires effective education, preparation and ongoing support for the whole team. The challenges of providing care in the context of complex interdisciplinary relationships have been highlighted by this study. Aspects of this study may assist in planning further nursing interventions for patients undergoing radiotherapy for cancer, and continue to enhance the contribution of the radiation oncology nurse to improved patient outcomes.
Resumo:
The effect of thermal radiation on a steady two-dimensional natural convection laminar flow of viscous incompressible optically thick fluid along a vertical flat plate with streamwise sinusoidal surface temperature has been investigated in this study. Using the appropriate variables; the basic governing equations are transformed to convenient form and then solved numerically employing two efficient methods, namely, Implicit finite difference method (IFD) together with Keller box scheme and Straight forward finite difference (SFFD) method. Effects of the variation of the physical parameters, for example, conduction-radiation parameter (Planck number), surface temperature parameter, and the amplitude of the surface temperature, are shown on the skin friction and heat transfer rate quantitatively are shown numerically. Velocity and temperature profiles as well as streamlines and isotherms are also presented and discussed for the variation of conduction-radiation parameter. It is found that both skin-friction and rate of heat transfer are enhanced considerably by increasing the values of conduction radiation parameter, Rd.
Resumo:
Characteristics of modal sound radiation of finite cylindrical shells are studied using finite element and boundary element methods in this paper. In the low frequency range, modal radiation efficiencies of finite cylindrical shells are found to asymptotically approach those of the corresponding infinite cylindrical shell when structural trace wavelengths of the cylindrical shells are greater than the acoustic wavelength. Modal radiation efficiencies for each group of modes having the same circumferential modal index decrease as the axial modal index increases. They converge to each other when the axial trace wavelength is much greater than the circumferential trace wavelength. The mechanism leading to lower radiation efficiency of modes with higher circumferential modal index of short cylinders is explained. Similar to those of flat plate panels, change in slope or waviness is observed in modal radiation efficiency curves of modes with higher order axial modal index at medium frequencies. This is attributed to the interference of sound radiated by neighbouring vibrating cells when the distance between nodal lines of a vibrating mode is in the same order or smaller than the acoustic wavelength. Effects of the internal sound field on modal radiation efficiencies of a finite open-end cylinder are discussed.
Resumo:
Background: Radiation-induced skin reaction (RISR) is one of the most common and distressing side effects of radiotherapy in patients with cancer. It is featured with swelling, redness, itching, pain, breaks in skin, discomfort, and a burning sensation. There is a lack of convincing evidence supporting any single practice in the prevention or management of RISR. Methods/Designs: This double-blinded randomised controlled trial aims to investigate the effects of a natural oil-based emulsion containing allantoin (as known as Moogoo Udder Cream®) versus aqueous cream in reducing RISR, improving pain, itching and quality of life in this patient group. One group will receive Moogoo Udder Cream®. Another group will receive aqueous cream. Outcome measures will be collected using patient self-administered questionnaire, interviewer administered questionnaire and clinician assessment at commencement of radiotherapy, weekly during radiotherapy, and four weeks after the completion of radiotherapy. Discussion: Despite advances of radiologic advances and supportive care, RISR are still not well managed. There is a lack of efficacious interventions in managing RISR. While anecdotal evidence suggests that Moogoo Udder Cream® may be effective in managing RISR, research is needed to substantiate this claim. This paper presents the design of a double blind randomised controlled trial that will evaluate the effects of Moogoo Udder Cream® versus aqueous cream for managing in RISR in patients with cancer. Trial registration: ACTRN 12612000568819
Resumo:
Contemporary 3D radiotherapy treatment planning relies upon the use of 3D electron density maps derived from computed tomography (CT) scans of patient anatomy, to evaluate the effects of that anatomy on radiation dose distributions. Production of these electron density maps requires that the CT numbers (Hounsfield units) that quantify the attenuation of the x-ray beam by the patient’s anatomy must be reliably converted into electron densities, using a stable calibration relationship. This study investigates the fidelity of electron density assignment in the presence of metallic prostheses and implants.
Resumo:
We conducted a clinical trial to compare the molecular and cellular responses of human melanocytes and keratinocytes in vivo to solar-simulated ultraviolet radiation (SSUVR) in 57 Caucasian participants grouped according to MC1R genotype. We found that, on average, the density of epidermal melanocytes 14 days after exposure to 2 minimal erythemal dose (MED) SSUVR was twofold higher than baseline (unirradiated) skin. However, the change in epidermal melanocyte counts among people carrying germline MC1R variants (97% increase) was significantly less than those with wild-type MC1R (164% increase; P = 0.01). We also found that sunscreen applied to the skin before exposure to 2 MED SSUVR completely blocked the effects of DNA damage, p53 induction, and cellular proliferation in both melanocytes and keratinocytes.
Resumo:
Purpose Intensity modulated radiotherapy (IMRT) treatments require more beam-on time and produce more linac head leakage to deliver similar doses to conventional, unmodulated, radiotherapy treatments. It is necessary to take this increased leakage into account when evaluating the results of radiation surveys around bunkers that are, or will be, used for IMRT. The recommended procedure of 15 applying a monitor-unit based workload correction factor to secondary barrier survey measurements, to account for this increased leakage when evaluating radiation survey measurements around IMRT bunkers, can lead to potentially-costly over estimation of the required barrier thickness. This study aims to provide initial guidance on the validity of reducing the value of the correction factor when applied to different radiation barriers (primary barriers, doors, maze walls and other walls) by 20 evaluating three different bunker designs. Methods Radiation survey measurements of primary, scattered and leakage radiation were obtained at each of five survey points around each of three different radiotherapy bunkers and the contribution of leakage to the total measured radiation dose at each point was evaluated. Measurements at each survey point were made with the linac gantry set to 12 equidistant positions from 0 to 330o, to 25 assess the effects of radiation beam direction on the results. Results For all three bunker designs, less than 0.5% of dose measured at and alongside the primary barriers, less than 25% of the dose measured outside the bunker doors and up to 100% of the dose measured outside other secondary barriers was found to be caused by linac head leakage. Conclusions Results of this study suggest that IMRT workload corrections are unnecessary, for 30 survey measurements made at and alongside primary barriers. Use of reduced IMRT workload correction factors is recommended when evaluating survey measurements around a bunker door, provided that a subset of the measurements used in this study are repeated for the bunker in question. Reduction of the correction factor for other secondary barrier survey measurements is not recommended unless the contribution from leakage is separetely evaluated.
Resumo:
Background Radiation-induced skin reaction (RISR) is a common side effect that affects the majority of cancer patients receiving radiation treatment. RISR is often characterised by swelling,redness, pigmentation, fibrosis, and ulceration, pain, warmth, burning, and itching of the skin. The aim of this systematic review was to assess the effects of interventions which aim to prevent or manage RISR in people with cancer. Methods We searched the following databases up to November 2012: Cochrane Skin Group Specialised Register, CENTRAL (2012, Issue 11), MEDLINE (from 1946), EMBASE (from 1974), PsycINFO (from 1806), CINAHL (from 1981) and LILACS (from 1982). Randomized controlled trials evaluating interventions for preventing or managing RISR in cancer patients were included. The primary outcomes were development of RISR, and levels of RISR and symptom severity. Secondary outcomes were time taken to develop erythema or dry desquamation; quality of life; time taken to heal, a number of skin reaction and symptom severity measures; cost, participant satisfaction; ease of use and adverse effects. Where appropriate, we pooled results of randomized controlled trials using mean differences (MD) or odd ratios (OR) with 95% confidence intervals (CI). Results Forty-seven studies were included in this review. These evaluated six types of interventions (oral systemic medications; skin care practices; steroidal topical therapies; non-steroidal topical therapies; dressings and other). Findings from two meta-analyses demonstrated significant benefits of oral Wobe-Mugos E for preventing RISR (OR 0.13 (95% CI 0.05 to 0.38)) and limiting the maximal level of RISR (MD −0.92 (95% CI −1.36 to −0.48)). Another meta-analysis reported that wearing deodorant does not influence the development of RISR (OR 0.80 (95% CI 0.47 to 1.37)). Conclusions Despite the high number of trials in this area, there is limited good, comparative research that provides definitive results suggesting the effectiveness of any single intervention for reducing RISR. More research is required to demonstrate the usefulness of a wide range of products that are being used for reducing RISR. Future efforts for reducing RISR severity should focus on promising interventions, such as Wobe-Mugos E and oral zinc.