127 resultados para Quasars: absorption lines


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Split System Approach (SSA) based methodology is presented to assist in making optimal Preventive Maintenance decisions for serial production lines. The methodology treats a production line as a complex series system with multiple PM actions over multiple intervals. Both risk related cost and maintenance related cost are factored into the methodology as either deterministic or random variables. This SSA based methodology enables Asset Management (AM) decisions to be optimized considering a variety of factors including failure probability, failure cost, maintenance cost, PM performance, and the type of PM strategy. The application of this new methodology and an evaluation of the effects of these factors on PM decisions are demonstrated using an example. The results of this work show that the performance of a PM strategy can be measured by its Total Expected Cost Index (TECI). The optimal PM interval is dependent on TECI, PM performance and types of PM strategies. These factors are interrelated. Generally it was found that a trade-off between reliability and the number of PM actions needs to be made so that one can minimize Total Expected Cost (TEC) for asset maintenance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural iowaite, magnesium–ferric oxychloride mineral having light green color originating from Australia has been characterized by EPR, optical, IR, and Raman spectroscopy. The optical spectrum exhibits a number of electronic bands due to both Fe(III) and Mn(II) ions in iowaite. From EPR studies, the g values are calculated for Fe(III) and g and A values for Mn(II). EPR and optical absorption studies confirm that Fe(III) and Mn(II) are in distorted octahedral geometry. The bands that appear both in NIR and Raman spectra are due to the overtones and combinations of water and carbonate molecules. Thus EPR, optical, and Raman spectroscopy have proven most useful for the study of the chemistry of natural iowaite and chemical changes in the mineral.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Foam-filled conical tubes have recently emerged as efficient energy absorbing devices to mitigate the adverse effects of impacts. The primary aim of this thesis was to generate research and design information on the impact and energy absorption response of empty and foam-filled conical tubes, and to facilitate their application in energy absorbing systems under axial and oblique loading conditions representative of those typically encountered in crashworthiness and impact applications. Finite element techniques supported by experiments and existing results were used in the investigation. Major findings show that the energy absorption response can be effectively controlled by varying geometry and material parameters. A useful empirical formula was developed for providing engineering designers with an initial estimate of the load ratio and hence energy absorption performances of these devices. It was evident that foam-filled conical tubes enhance the energy absorption capacity and stabilise the crush response for both axial and oblique impact loading without a significant increase in the initial peak load. This is practically beneficial when higher kinetic energy needs to be absorbed, thus reducing the impact force transmitted to the protected structure and occupants. Such tubes also increase and maintain the energy absorption capacity under global bending as well as minimise the reduction of energy absorption capacity with increasing load angle. Furthermore, the results also highlight the feasibility of adding a foam-filled conical tube as a supplementary device in energy absorbing systems, since the overall energy absorption performance of such systems can be favourably enhanced by only including a relatively small energy absorbing device. Above all, the results demonstrate the superior performance of foam-filled conical tube for mitigating impact energy in impact and crashworthiness applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mottramite mineral originated from Tsumeb Corporation Mine, Tsumeb, Otavi, Namibia, is used in the present work. The mineral contains of vanadium and copper to the extent of 22.73% and 16.84% by weight respectively as V2O5 and CuO. An EPR study of sample confirms the presence of Cu(II) with g = 2.2. Optical absorption spectrum of mottramite indicates that Cu(II) is present in rhombic environment. NIR results are due to water fundamentals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A voglite mineral sample of Volrite Canyon #1 mine, Frey Point, White Canyon Mine District, San Juan County, Utah, USA is used in the present study. An EPR study on powdered sample confirms the presence of Mn(II) and Cu(II). Optical absorption spectral results are due to Cu(II) which is in distorted octahedron. NIR results are indicating the presence of water fundamentals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When asymptotic series methods are applied in order to solve problems that arise in applied mathematics in the limit that some parameter becomes small, they are unable to demonstrate behaviour that occurs on a scale that is exponentially small compared to the algebraic terms of the asymptotic series. There are many examples of physical systems where behaviour on this scale has important effects and, as such, a range of techniques known as exponential asymptotic techniques were developed that may be used to examinine behaviour on this exponentially small scale. Many problems in applied mathematics may be represented by behaviour within the complex plane, which may subsequently be examined using asymptotic methods. These problems frequently demonstrate behaviour known as Stokes phenomenon, which involves the rapid switches of behaviour on an exponentially small scale in the neighbourhood of some curve known as a Stokes line. Exponential asymptotic techniques have been applied in order to obtain an expression for this exponentially small switching behaviour in the solutions to orginary and partial differential equations. The problem of potential flow over a submerged obstacle has been previously considered in this manner by Chapman & Vanden-Broeck (2006). By representing the problem in the complex plane and applying an exponential asymptotic technique, they were able to detect the switching, and subsequent behaviour, of exponentially small waves on the free surface of the flow in the limit of small Froude number, specifically considering the case of flow over a step with one Stokes line present in the complex plane. We consider an extension of this work to flow configurations with multiple Stokes lines, such as flow over an inclined step, or flow over a bump or trench. The resultant expressions are analysed, and demonstrate interesting implications, such as the presence of exponentially sub-subdominant intermediate waves and the possibility of trapped surface waves for flow over a bump or trench. We then consider the effect of multiple Stokes lines in higher order equations, particu- larly investigating the behaviour of higher-order Stokes lines in the solutions to partial differential equations. These higher-order Stokes lines switch off the ordinary Stokes lines themselves, adding a layer of complexity to the overall Stokes structure of the solution. Specifically, we consider the different approaches taken by Howls et al. (2004) and Chap- man & Mortimer (2005) in applying exponential asymptotic techniques to determine the higher-order Stokes phenomenon behaviour in the solution to a particular partial differ- ential equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper treats the crush behaviour and energy absorption response of foam-filled conical tubes subjected to oblique impact loading. Dynamic computer simulation techniques validated by experimental testing are used to carry out a parametric study of such devices. The study aims at quantifying the energy absorption of empty and foam-filled conical tubes under oblique impact loading, for variations in the load angle and geometry parameters of the tube. It is evident that foam-filled conical tubes are preferable as impact energy absorbers due to their ability to withstand oblique impact loads as effectively as axial impact loads. Furthermore, it is found that the energy absorption capacity of filled tubes is better maintained compared to that of empty tubes as the load orientation increases. The primary outcome of this study is design information for the use of foam-filled conical tubes as energy absorbers where oblique impact loading is expected.