133 resultados para PERMANENT MAGNETS
Resumo:
This study develops a life-cycle model where investors make investment decisions in a realistic environment. Model results show that personal illiquid projects (housing and children), fixed costs (once-off/per-period participation costs plus variable/fixed transaction costs) and endogenous risky human capital (with permanent, transitory and disastrous shocks) together are able to address both the non-participation puzzle and the age-effects puzzle. Empirical implications of the model are examined using Heckman’s two-step method with the latest five Surveys of Consumer Finance (SCF). Regression results show that liquidity, informational cost and human capital are indeed the major determinants of participation and asset allocation decisions at different stages of an investor’s life.
Resumo:
Aim: To review the titles, roles and scope of practice of Advanced Practice Nurses internationally.----- Background: There is a worldwide shortage of nurses but there is also an increased demand for nurses with enhanced skills who can manage a more diverse, complex and acutely ill patient population than ever before. As a result, a variety of nurses in advanced practice positions has evolved around the world. The differences in nomenclature have led to confusion over the roles, scope of practice and professional boundaries of nurses in an international context.----- Method: CINAHL, Medline, and the Cochrane database of Systematic Reviews were searched from 1987 to 2008. Information was also obtained through government health and professional organisation websites. All information in the literature regarding current and past status, and nomenclature of advanced practice nursing was considered relevant.----- Findings: There are many names for Advanced Practice Nurses, and although many of these roles are similar in their function, they can often have different titles.----- Conclusion: Advanced Practice Nurses are critical for the future, provide cost-effective care and are highly regarded by patients/clients. They will be a constant and permanent feature of future health care provision. However, clarification regarding their classification and regulation is necessary in some countries.
Resumo:
An inverted figurative monument to Victorian governor Charles Joseph Latrobe. By creating the impression that a nineteenth century statue has been made to stand precariously on its head, the work seeks to address the tension between the authority of the monument (as a civic marker and a form of portraiture) and its ‘invisibility’ in public space while simultaneously addressing (and subverting) the ‘authorless’ nature of the figurative monument. The work was awarded a judge’s commendation in the 2005 Helen Lempriere National Sculpture Award and had strong responses from the viewing public and widespread media coverage. Ironically, this parodic monument had the effect of raising the profile of Charles La Trobe in the media in ways that a conventional monument would not. Landmark now endures as part of the permanent sculpture collection of Latrobe University, Melbourne.
Resumo:
This study explores full-time workers' understanding of and assumptions about part-time work against six job quality components identified in recent literature. Forty interviews were conducted with employees in a public sector agency in Australia, a study context where part-time work is ostensibly 'good quality' and is typically long term, voluntary, involving secure contracts (i.e. permanent rather than casual) and having predictable hours distributed evenly over the week and year. Despite strong collective bargaining arrangements as well as substantial legal and industrial obligations, the findings revealed some serious concerns for part-time job quality. These concerns included reduced responsibilities and lesser access to high status roles and projects, a lack of access to promotion opportunities, increased work intensity and poor workplace support. The highly gendered, part-time labour market also means that it is women who disproportionately experience this disadvantage. To foster equity, greater attention needs to focus on monitoring and enhancing job quality, regardless of hours worked.
Resumo:
Innovation Management (IM) in most knowledge based firms is used on an adhoc basis where senior managers use this term to leverage competitive edge without understanding its true meaning and how its robust application in organisation impacts organisational performance. There have been attempts in the manufacturing industry to harness the innovative potential of the business and apprehend its use as a point of difference to improve financial and non financial outcomes. However further work is required to innovatively extrapolate the lessons learnt to introduce incremental and/or radical innovation to knowledge based firms. An international structural engineering firm has been proactive in exploring and implementing this idea and has forged an alliance with the Queensland University of Technology to start the Innovation Management Program (IMP). The aim was to develop a permanent and sustainable program with which innovation can be woven through the fabric of the organisation. There was an intention to reinforce the firms’ vision and reinvigorate ideas and create new options that help in its realisation. This paper outlines the need for innovation in knowledge based firms and how this consulting engineering firm reacted to this exigency. The development of the Innovation Management Program, its different themes (and associated projects) and how they integrate to form a holistic model is also discussed. The model is designed around the need of providing professional qualification improvement opportunities for staff, setting-up organised, structured & easily accessible knowledge repositories to capture tacit and explicit knowledge and implement efficient project management strategies with a view to enhance client satisfaction. A Delphi type workshop is used to confirm the themes and projects. Some of the individual projects and their expected outcomes are also discussed. A questionnaire and interviews were used to collect data to select appropriate candidates responsible for leading these projects. Following an in-depth analysis of preliminary research results, some recommendations on the selection process will also be presented.
Resumo:
Titanate nanofibers with two formulas, Na2Ti3O7 and Na1.5H0.5Ti3O7, respectively, exhibit ideal properties for removal of radioactive and heavy metal ions in wastewater, such as Sr2+ , Ba2+ (as substitute of 226Ra2+), and Pb2+ ions. These nanofibers can be fabricated readily by a reaction between titania and caustic soda and have structures in which TiO6 octahedra join each other to form layers with negative charges; the sodium cations exist within the interlayer regions and are exchangeable. They can selectively adsorb the bivalent radioactive ions and heavy metal ions from water through ion exchange process. More importantly, such sorption finally induces considerable deformation of the layer structure, resulting in permanent entrapment of the toxic bivalent cations in the fibers so that the toxic ions can be safely deposited. This study highlights that nanoparticles of inorganic ion exchangers with layered structure are potential materials for efficient removal of the toxic ions from contaminated water.
Resumo:
We conduct the detailed numerical investigation of a nanomanipulation and nanofabrication technique—thermal tweezers with dynamic evolution of surface temperature, caused by absorption of interfering laser pulses in a thin metalfilm or any other absorbing surface. This technique uses random Brownian forces in the presence of strong temperature modulation (surfacethermophoresis) for effective manipulation of particles/adatoms with nanoscale resolution. Substantial redistribution of particles on the surface is shown to occur with the typical size of the obtained pattern elements of ∼100 nm, which is significantly smaller than the wavelength of the incident pulses used (532 nm). It is also demonstrated that thermal tweezers based on surfacethermophoresis of particles/adatoms are much more effective in achieving permanent high maximum-to-minimum concentration ratios than bulk thermophoresis, which is explained by the interaction of diffusing particles with the periodic lattice potential on the surface. Typically required pulse regimes including pulse lengths and energies are also determined. The approach is applicable for reproducing any holographically achievable surfacepatterns, and can thus be used for engineering properties of surfaces including nanopatterning and design of surface metamaterials.
Resumo:
Transition metal oxides are functional materials that have advanced applications in many areas, because of their diverse properties (optical, electrical, magnetic, etc.), hardness, thermal stability and chemical resistance. Novel applications of the nanostructures of these oxides are attracting significant interest as new synthesis methods are developed and new structures are reported. Hydrothermal synthesis is an effective process to prepare various delicate structures of metal oxides on the scales from a few to tens of nanometres, specifically, the highly dispersed intermediate structures which are hardly obtained through pyro-synthesis. In this thesis, a range of new metal oxide (stable and metastable titanate, niobate) nanostructures, namely nanotubes and nanofibres, were synthesised via a hydrothermal process. Further structure modifications were conducted and potential applications in catalysis, photocatalysis, adsorption and construction of ceramic membrane were studied. The morphology evolution during the hydrothermal reaction between Nb2O5 particles and concentrated NaOH was monitored. The study demonstrates that by optimising the reaction parameters (temperature, amount of reactants), one can obtain a variety of nanostructured solids, from intermediate phases niobate bars and fibres to the stable phase cubes. Trititanate (Na2Ti3O7) nanofibres and nanotubes were obtained by the hydrothermal reaction between TiO2 powders or a titanium compound (e.g. TiOSO4·xH2O) and concentrated NaOH solution by controlling the reaction temperature and NaOH concentration. The trititanate possesses a layered structure, and the Na ions that exist between the negative charged titanate layers are exchangeable with other metal ions or H+ ions. The ion-exchange has crucial influence on the phase transition of the exchanged products. The exchange of the sodium ions in the titanate with H+ ions yields protonated titanate (H-titanate) and subsequent phase transformation of the H-titanate enable various TiO2 structures with retained morphology. H-titanate, either nanofibres or tubes, can be converted to pure TiO2(B), pure anatase, mixed TiO2(B) and anatase phases by controlled calcination and by a two-step process of acid-treatment and subsequent calcination. While the controlled calcination of the sodium titanate yield new titanate structures (metastable titanate with formula Na1.5H0.5Ti3O7, with retained fibril morphology) that can be used for removal of radioactive ions and heavy metal ions from water. The structures and morphologies of the metal oxides were characterised by advanced techniques. Titania nanofibres of mixed anatase and TiO2(B) phases, pure anatase and pure TiO2(B) were obtained by calcining H-titanate nanofibres at different temperatures between 300 and 700 °C. The fibril morphology was retained after calcination, which is suitable for transmission electron microscopy (TEM) analysis. It has been found by TEM analysis that in mixed-phase structure the interfaces between anatase and TiO2(B) phases are not random contacts between the engaged crystals of the two phases, but form from the well matched lattice planes of the two phases. For instance, (101) planes in anatase and (101) planes of TiO2(B) are similar in d spaces (~0.18 nm), and they join together to form a stable interface. The interfaces between the two phases act as an one-way valve that permit the transfer of photogenerated charge from anatase to TiO2(B). This reduces the recombination of photogenerated electrons and holes in anatase, enhancing the activity for photocatalytic oxidation. Therefore, the mixed-phase nanofibres exhibited higher photocatalytic activity for degradation of sulforhodamine B (SRB) dye under ultraviolet (UV) light than the nanofibres of either pure phase alone, or the mechanical mixtures (which have no interfaces) of the two pure phase nanofibres with a similar phase composition. This verifies the theory that the difference between the conduction band edges of the two phases may result in charge transfer from one phase to the other, which results in effectively the photogenerated charge separation and thus facilitates the redox reaction involving these charges. Such an interface structure facilitates charge transfer crossing the interfaces. The knowledge acquired in this study is important not only for design of efficient TiO2 photocatalysts but also for understanding the photocatalysis process. Moreover, the fibril titania photocatalysts are of great advantage when they are separated from a liquid for reuse by filtration, sedimentation, or centrifugation, compared to nanoparticles of the same scale. The surface structure of TiO2 also plays a significant role in catalysis and photocatalysis. Four types of large surface area TiO2 nanotubes with different phase compositions (labelled as NTA, NTBA, NTMA and NTM) were synthesised from calcination and acid treatment of the H-titanate nanotubes. Using the in situ FTIR emission spectrescopy (IES), desorption and re-adsorption process of surface OH-groups on oxide surface can be trailed. In this work, the surface OH-group regeneration ability of the TiO2 nanotubes was investigated. The ability of the four samples distinctively different, having the order: NTA > NTBA > NTMA > NTM. The same order was observed for the catalytic when the samples served as photocatalysts for the decomposition of synthetic dye SRB under UV light, as the supports of gold (Au) catalysts (where gold particles were loaded by a colloid-based method) for photodecomposition of formaldehyde under visible light and for catalytic oxidation of CO at low temperatures. Therefore, the ability of TiO2 nanotubes to generate surface OH-groups is an indicator of the catalytic activity. The reason behind the correlation is that the oxygen vacancies at bridging O2- sites of TiO2 surface can generate surface OH-groups and these groups facilitate adsorption and activation of O2 molecules, which is the key step of the oxidation reactions. The structure of the oxygen vacancies at bridging O2- sites is proposed. Also a new mechanism for the photocatalytic formaldehyde decomposition with the Au-TiO2 catalysts is proposed: The visible light absorbed by the gold nanoparticles, due to surface plasmon resonance effect, induces transition of the 6sp electrons of gold to high energy levels. These energetic electrons can migrate to the conduction band of TiO2 and are seized by oxygen molecules. Meanwhile, the gold nanoparticles capture electrons from the formaldehyde molecules adsorbed on them because of gold’s high electronegativity. O2 adsorbed on the TiO2 supports surface are the major electron acceptor. The more O2 adsorbed, the higher the oxidation activity of the photocatalyst will exhibit. The last part of this thesis demonstrates two innovative applications of the titanate nanostructures. Firstly, trititanate and metastable titanate (Na1.5H0.5Ti3O7) nanofibres are used as intelligent absorbents for removal of radioactive cations and heavy metal ions, utilizing the properties of the ion exchange ability, deformable layered structure, and fibril morphology. Environmental contamination with radioactive ions and heavy metal ions can cause a serious threat to the health of a large part of the population. Treatment of the wastes is needed to produce a waste product suitable for long-term storage and disposal. The ion-exchange ability of layered titanate structure permitted adsorption of bivalence toxic cations (Sr2+, Ra2+, Pb2+) from aqueous solution. More importantly, the adsorption is irreversible, due to the deformation of the structure induced by the strong interaction between the adsorbed bivalent cations and negatively charged TiO6 octahedra, and results in permanent entrapment of the toxic bivalent cations in the fibres so that the toxic ions can be safely deposited. Compared to conventional clay and zeolite sorbents, the fibril absorbents are of great advantage as they can be readily dispersed into and separated from a liquid. Secondly, new generation membranes were constructed by using large titanate and small ã-alumina nanofibres as intermediate and top layers, respectively, on a porous alumina substrate via a spin-coating process. Compared to conventional ceramic membranes constructed by spherical particles, the ceramic membrane constructed by the fibres permits high flux because of the large porosity of their separation layers. The voids in the separation layer determine the selectivity and flux of a separation membrane. When the sizes of the voids are similar (which means a similar selectivity of the separation layer), the flux passing through the membrane increases with the volume of the voids which are filtration passages. For the ideal and simplest texture, a mesh constructed with the nanofibres 10 nm thick and having a uniform pore size of 60 nm, the porosity is greater than 73.5 %. In contrast, the porosity of the separation layer that possesses the same pore size but is constructed with metal oxide spherical particles, as in conventional ceramic membranes, is 36% or less. The membrane constructed by titanate nanofibres and a layer of randomly oriented alumina nanofibres was able to filter out 96.8% of latex spheres of 60 nm size, while maintaining a high flux rate between 600 and 900 Lm–2 h–1, more than 15 times higher than the conventional membrane reported in the most recent study.
Resumo:
We investigate whether therewas a causal effect of income changes on the health satisfaction of East and West Germans in the years following reunification. Our data source is the German Socio-Economic Panel (GSOEP) between 1984 and 2002, and we fit a recently proposed fixed-effects ordinal estimator to our health measures and use a causal decomposition technique to account for panel attrition.We find evidence of a significant positive effect of income changes on health satisfaction, but the quantitative size of this effect is small. This is the case with respect to current income and a measure of ‘permanent’ income.
Resumo:
Air transportation of Australian casualties in World War II was initially carried out in air ambulances with an accompanying male medical orderly. By late 1943 with the war effort concentrated in the Pacific, Allied military authorities realised that air transport was needed to move the increasing numbers of casualties over longer distances. The Royal Australian Air Force (RAAF) became responsible for air evacuation of Australian casualties and established a formal medical air evacuation system with trained flight teams early in 1944. Specialised Medical Air Evacuation Transport Units (MAETUs) were established whose sole responsibility was undertaking air evacuations of Australian casualties from the forward operational areas back to definitive medical care. Flight teams consisting of a RAAF nursing sister (registered nurse) and a medical orderly carried out the escort duties. These personnel had been specially trained in Australia for their role. Post-WWII, the RAAF Nursing Service was demobilised with a limited number of nurses being retained for the Interim Air Force. Subsequently, those nurses were offered commissions in the Permanent Air Force. Some of the nurses who remained were air evacuation trained and carried out air evacuations both in Australia and as part of the British Commonwealth Occupation Force in Japan. With the outbreak of the Korean War in June 1950, Australia became responsible for the air evacuation of British Commonwealth casualties from Korea to Japan. With a re-organisation of the Australian forces as part of the British Commonwealth forces, RAAF nurses were posted to undertake air evacuation from Korea and back to Australia from Iwakuni, Japan. By 1952, a specialised casualty staging section was established in Seoul and staffed by RAAF nurses from Iwakuni on a rotation basis. The development of the Australian air evacuation system and the role of the flight nurses are not well documented for the period 1943-1953. The aims of this research are three fold and include documenting the origins and development of the air evacuation system from 1943-1953; analysing and documenting the RAAF nurse’s role and exploring whether any influences or lessons remain valid today. A traditional historical methodology of narrative and then analysis was used to inform the flight nurse’s role within the totality of the social system. Evidence was based on primary data sources mainly held in Defence files, the Australian War Memorial or the National Archives of Australia. Interviews with 12 ex-RAAF nurses from both WWII and the Korean War were conducted to provide information where there were gaps in the primary data and to enable exploration of the flight nurses’ role and their contributions in war of the air evacuation of casualties. Finally, this thesis highlights two lessons that remain valid today. The first is that interoperability of air evacuation systems with other nations is a force multiplier when resources are scarce or limited. Second, the pre-flight assessment of patients was essential and ensured that there were no deaths in-flight.
Resumo:
Visual localization systems that are practical for autonomous vehicles in outdoor industrial applications must perform reliably in a wide range of conditions. Changing outdoor conditions cause difficulty by drastically altering the information available in the camera images. To confront the problem, we have developed a visual localization system that uses a surveyed three-dimensional (3D)-edge map of permanent structures in the environment. The map has the invariant properties necessary to achieve long-term robust operation. Previous 3D-edge map localization systems usually maintain a single pose hypothesis, making it difficult to initialize without an accurate prior pose estimate and also making them susceptible to misalignment with unmapped edges detected in the camera image. A multihypothesis particle filter is employed here to perform the initialization procedure with significant uncertainty in the vehicle's initial pose. A novel observation function for the particle filter is developed and evaluated against two existing functions. The new function is shown to further improve the abilities of the particle filter to converge given a very coarse estimate of the vehicle's initial pose. An intelligent exposure control algorithm is also developed that improves the quality of the pertinent information in the image. Results gathered over an entire sunny day and also during rainy weather illustrate that the localization system can operate in a wide range of outdoor conditions. The conclusion is that an invariant map, a robust multihypothesis localization algorithm, and an intelligent exposure control algorithm all combine to enable reliable visual localization through challenging outdoor conditions.
Resumo:
Managing livestock movement in extensive systems has environmental and production benefits. Currently permanent wire fencing is used to control cattle; this is both expensive and inflexible. Cattle are known to respond to auditory and visual cues and we investigated whether these can be used to manipulate their behaviour. Twenty-five Belmont Red steers with a mean live weight of 270kg were each randomly assigned to one of five treatments. Treatments consisted of a combination of cues (audio, tactile and visual stimuli) and consequence (electrical stimulation). The treatments were electrical stimulation alone, audio plus electrical stimulation, vibration plus electrical stimulation, light plus electrical stimulation and electrified electric fence (6kV) plus electrical stimulation. Cue stimuli were administered for 3s followed immediately by electrical stimulation (consequence) of 1kV for 1s. The experiment tested the operational efficacy of an on-animal control or virtual fencing system. A collar-halter device was designed to carry the electronics, batteries and equipment providing the stimuli, including audio, vibration, light and electrical of a prototype virtual fencing device. Cattle were allowed to travel along a 40m alley to a group of peers and feed while their rate of travel and response to the stimuli were recorded. The prototype virtual fencing system was successful in modifying the behaviour of the cattle. The rate of travel of cattle along the alley demonstrated the large variability in behavioural response associated with tactile, visual and audible cues. The experiment demonstrated virtual fencing has potential for controlling cattle in extensive grazing systems. However, larger numbers of cattle need to be tested to derive a better understanding of the behavioural variance. Further controlled experimental work is also necessary to quantify the interaction between cues, consequences and cattle learning.
Resumo:
Illegal street racing has received increased attention in recent years from the media, governments and road safety professionals. At the same time, there has been a shift from treating illegal street racing as a public nuisance issue to a road safety problem in Australia, as this behaviour now attracts a penalty of increased periods of vehicle impoundment leading to permanent vehicle forfeiture for repeat offences. This severe vehicle sanction is typically applied to repeat drink driving offenders and drivers who breach suspensions and disqualifications in North American jurisdictions, but was first introduced in Australia to deal with illegal street racing and associated risky driving behaviours, grouped together under the label of ‘hooning’ in Australian jurisdictions. This paper describes how Australian jurisdictions are dealing with this issue. The research described in this paper drew on multiple data sources to explore illegal street racing and the management of this issue in Australia. First, the paper reviews the relevant legislation in each Australian state to describe the cross-jurisdictional similarities and differences in approaches. It also describes some results from focus group discussions and a quantitative online survey with drivers who self-report engaging in illegal street racing and associated behaviours in Queensland, Australia. It was found that approaches to dealing with illegal street racing and associated risky driving behaviours in each Australian state are similar, with increasing periods of vehicle impoundment (leading to vehicle forfeiture) applied to repeat hooning offences within prescribed periods. Participants in the focus groups and respondents to the questionnaire generally felt these penalty periods were severe, with perceptions of severity increasing with the length of the penalty period. It was concluded that there is a need for each jurisdiction to objectively evaluate the effectiveness of their vehicle impoundment and forfeiture programs for hooning. These evaluations should compare the relative costs of these programs (e.g., enforcement, unrecovered towing and storage fees, and court costs) to the observed benefits (e.g., reduction in target behaviours, reduction in community complaints, and reduction in the number and severity of associated crashes).
Resumo:
Islanded operation, protection, reclosing and arc extinguishing are some of the challenging issues related to the connection of converter interfaced distributed generators (DGs) into a distribution network. The isolation of upstream faults in grid connected mode and fault detection in islanded mode using overcurrent devices are difficult. In the event of an arc fault, all DGs must be disconnected in order to extinguish the arc. Otherwise, they will continue to feed the fault, thus sustaining the arc. However, the system reliability can be increased by maximising the DG connectivity to the system: therefore, the system protection scheme must ensure that only the faulted segment is removed from the feeder. This is true even in the case of a radial feeder as the DG can be connected at various points along the feeder. In this paper, a new relay scheme is proposed which, along with a novel current control strategy for converter interfaced DGs, can isolate permanent and temporary arc faults. The proposed protection and control scheme can even coordinate with reclosers. The results are validated through PSCAD/EMTDC simulation and MATLAB calculations.