336 resultados para Optimal solutions


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A multi-resource multi-stage scheduling methodology is developed to solve short-term open-pit mine production scheduling problems as a generic multi-resource multi-stage scheduling problem. It is modelled using essential characteristics of short-term mining production operations such as drilling, sampling, blasting and excavating under the capacity constraints of mining equipment at each processing stage. Based on an extended disjunctive graph model, a shifting-bottleneck-procedure algorithm is enhanced and applied to obtain feasible short-term open-pit mine production schedules and near-optimal solutions. The proposed methodology and its solution quality are verified and validated using a real mining case study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The work presented in this report is aimed to implement a cost-effective offline mission path planner for aerial inspection tasks of large linear infrastructures. Like most real-world optimisation problems, mission path planning involves a number of objectives which ideally should be minimised simultaneously. Understandably, the objectives of a practical optimisation problem are conflicting each other and the minimisation of one of them necessarily implies the impossibility to minimise the other ones. This leads to the need to find a set of optimal solutions for the problem; once such a set of available options is produced, the mission planning problem is reduced to a decision making problem for the mission specialists, who will choose the solution which best fit the requirements of the mission. The goal of this work is then to develop a Multi-Objective optimisation tool able to provide the mission specialists a set of optimal solutions for the inspection task amongst which the final trajectory will be chosen, given the environment data, the mission requirements and the definition of the objectives to minimise. All the possible optimal solutions of a Multi-Objective optimisation problem are said to form the Pareto-optimal front of the problem. For any of the Pareto-optimal solutions, it is impossible to improve one objective without worsening at least another one. Amongst a set of Pareto-optimal solutions, no solution is absolutely better than another and the final choice must be a trade-off of the objectives of the problem. Multi-Objective Evolutionary Algorithms (MOEAs) are recognised to be a convenient method for exploring the Pareto-optimal front of Multi-Objective optimization problems. Their efficiency is due to their parallelism architecture which allows to find several optimal solutions at each time

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In providing simultaneous information on expression profiles for thousands of genes, microarray technologies have, in recent years, been largely used to investigate mechanisms of gene expression. Clustering and classification of such data can, indeed, highlight patterns and provide insight on biological processes. A common approach is to consider genes and samples of microarray datasets as nodes in a bipartite graphs, where edges are weighted e.g. based on the expression levels. In this paper, using a previously-evaluated weighting scheme, we focus on search algorithms and evaluate, in the context of biclustering, several variations of Genetic Algorithms. We also introduce a new heuristic “Propagate”, which consists in recursively evaluating neighbour solutions with one more or one less active conditions. The results obtained on three well-known datasets show that, for a given weighting scheme,optimal or near-optimal solutions can be identified.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Artificial intelligence (AI) applications typically involve encoding expert knowledge in machine form to find optimal solutions for a given problem. However, this paper deals with the opposite process of extracting new and human-comprehensible insights from emergent AI behaviour. Some examples of useful game-related insights drawn from observing AI players in action are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the past few decades, developing efficient methods to solve dynamic facility layout problems has been focused on significantly by practitioners and researchers. More specifically meta-heuristic algorithms, especially genetic algorithm, have been proven to be increasingly helpful to generate sub-optimal solutions for large-scale dynamic facility layout problems. Nevertheless, the uncertainty of the manufacturing factors in addition to the scale of the layout problem calls for a mixed genetic algorithm–robust approach that could provide a single unlimited layout design. The present research aims to devise a customized permutation-based robust genetic algorithm in dynamic manufacturing environments that is expected to be generating a unique robust layout for all the manufacturing periods. The numerical outcomes of the proposed robust genetic algorithm indicate significant cost improvements compared to the conventional genetic algorithm methods and a selective number of other heuristic and meta-heuristic techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hospitals are critical elements of health care systems and analysing their capacity to do work is a very important topic. To perform a system wide analysis of public hospital resources and capacity, a multi-objective optimization (MOO) approach has been proposed. This approach identifies the theoretical capacity of the entire hospital and facilitates a sensitivity analysis, for example of the patient case mix. It is necessary because the competition for hospital resources, for example between different entities, is highly influential on what work can be done. The MOO approach has been extensively tested on a real life case study and significant worth is shown. In this MOO approach, the epsilon constraint method has been utilized. However, for solving real life applications, with a large number of competing objectives, it was necessary to devise new and improved algorithms. In addition, to identify the best solution, a separable programming approach was developed. Multiple optimal solutions are also obtained via the iterative refinement and re-solution of the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper examines the ground-water flow problem associated with the injection and recovery of certain corrosive fluids into mineral bearing rock. The aim is to dissolve the minerals in situ, and then recover them in solution. In general, it is not possible to recover all the injected fluid, which is of concern economically and environmentally. However, a new strategy is proposed here, that allows all the leaching fluid to be recovered. A mathematical model of the situation is solved approximately using an asymptotic solution, and exactly using a boundary integral approach. Solutions are shown for two-dimensional flow, which is of some practical interest as it is achievable in old mine tunnels, for example.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Real‐time kinematic (RTK) GPS techniques have been extensively developed for applications including surveying, structural monitoring, and machine automation. Limitations of the existing RTK techniques that hinder their applications for geodynamics purposes are twofold: (1) the achievable RTK accuracy is on the level of a few centimeters and the uncertainty of vertical component is 1.5–2 times worse than those of horizontal components and (2) the RTK position uncertainty grows in proportional to the base‐torover distances. The key limiting factor behind the problems is the significant effect of residual tropospheric errors on the positioning solutions, especially on the highly correlated height component. This paper develops the geometry‐specified troposphere decorrelation strategy to achieve the subcentimeter kinematic positioning accuracy in all three components. The key is to set up a relative zenith tropospheric delay (RZTD) parameter to absorb the residual tropospheric effects and to solve the established model as an ill‐posed problem using the regularization method. In order to compute a reasonable regularization parameter to obtain an optimal regularized solution, the covariance matrix of positional parameters estimated without the RZTD parameter, which is characterized by observation geometry, is used to replace the quadratic matrix of their “true” values. As a result, the regularization parameter is adaptively computed with variation of observation geometry. The experiment results show that new method can efficiently alleviate the model’s ill condition and stabilize the solution from a single data epoch. Compared to the results from the conventional least squares method, the new method can improve the longrange RTK solution precision from several centimeters to the subcentimeter in all components. More significantly, the precision of the height component is even higher. Several geosciences applications that require subcentimeter real‐time solutions can largely benefit from the proposed approach, such as monitoring of earthquakes and large dams in real‐time, high‐precision GPS leveling and refinement of the vertical datum. In addition, the high‐resolution RZTD solutions can contribute to effective recovery of tropospheric slant path delays in order to establish a 4‐D troposphere tomography.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maintenance decisions for large-scale asset systems are often beyond an asset manager's capacity to handle. The presence of a number of possibly conflicting decision criteria, the large number of possible maintenance policies, and the reality of budget constraints often produce complex problems, where the underlying trade-offs are not apparent to the asset manager. This paper presents the decision support tool "JOB" (Justification and Optimisation of Budgets), which has been designed to help asset managers of large systems assess, select, interpret and optimise the effects of their maintenance policies in the presence of limited budgets. This decision support capability is realized through an efficient, scalable backtracking- based algorithm for the optimisation of maintenance policies, while enabling the user to view a number of solutions near this optimum and explore tradeoffs with other decision criteria. To assist the asset manager in selecting between various policies, JOB also provides the capability of Multiple Criteria Decision Making. In this paper, the JOB tool is presented and its applicability for the maintenance of a complex power plant system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The degradation efficiencies and behaviors of caffeic acid (CaA), p-coumaric acid (pCoA) and ferulic acid (FeA) in aqueous sucrose solutions containing the mixture of these hydroxycinnamic acids (HCAs) mixtures were studied by the Fenton oxidation process. Central composite design and multi-response surface methodology were used to evaluate and optimize the interactive effects of process parameters. Four quadratic polynomial models were developed for the degradation of each individual acid in the mixture and the total HCAs degraded. Sucrose was the most influential parameter that significantly affected the total amount of HCA degraded. Under the conditions studied there was < 0.01% loss of sucrose in all reactions. The optimal values of the process parameters for a 200 mg/L HCA mixture in water (pH 4.73, 25.15 °C) and sucrose solution (13 mass%, pH 5.39, 35.98 °C) were 77% and 57% respectively. Regression analysis showed goodness of fit between the experimental results and the predicted values. The degradation behavior of CaA differed from those of pCoA and FeA, where further CaA degradation is observed at increasing sucrose and decreasing solution pH. The differences (established using UV/Vis and ATR-FTIR spectroscopy) were because, unlike the other acids, CaA formed a complex with Fe(III) or with Fe(III) hydrogen-bonded to sucrose, and coprecipitated with lepidocrocite, an iron oxyhydroxide.