834 resultados para Navigation systems.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Current state of the art robot mapping and navigation systems produce impressive performance under a narrow range of robot platform, sensor and environmental conditions, in contrast to animals such as rats that produce “good enough” maps that enable them to function under an incredible range of situations. In this paper we present a rat-inspired featureless sensor-fusion system that assesses the usefulness of multiple sensor modalities based on their utility and coherence for place recognition during a navigation task, without knowledge as to the type of sensor. We demonstrate the system on a Pioneer robot in indoor and outdoor environments with abrupt lighting changes. Through dynamic weighting of the sensors, the system is able to perform correct place recognition and mapping where the static sensor weighting approach fails.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Driver distraction has recently been defined by Regan as "the diversion of attention away from activities critical for safe driving toward a competing activity, which may result in insufficient or no attention to activities critical for safe driving (Regan, Hallett & Gordon, 2011, p.1780)". One source of distraction is in-vehicle devices, even though they might provide other benefits, e.g. navigation systems. Currently, eco-driving systems have been growing rapidly in popularity. These systems send messages to drivers so that driving performance can be improved in terms of fuel efficiency. However, there remain unanswered questions about whether eco-driving systems endanger drivers by distracting them. In this research, the CARRS-Q advanced driving simulator was used in order to provide safety for participants and meanwhile simulate real world driving. The distraction effects of tasks involving three different in-vehicle systems were investigated: changing a CD, entering a five digit number as a part of navigation task and responding to an eco-driving task. Driving in these scenarios was compared with driving in the absence of these distractions, and while drivers engaged in critical manoeuvres. In order to account for practice effects, the same scenarios were duplicated on a second day. The three in-vehicle systems were not the exact facsimiles of any particular existing system, but were designed to have similar characteristics to those of system available. In general, the results show that drivers’ mental workloads are significantly higher in navigation and CD changing scenarios in comparison to the two other scenarios, which implies that these two tasks impose more visual/manual and cognitive demands. However, eco-driving mental workload is still high enough to be called marginally significant (p ~ .05) across manoeuvres. Similarly, event detection tasks show that drivers miss significantly more events in the navigation and CD changing scenarios in comparison to both the baseline and eco-driving scenario across manoeuvres. Analysis of the practice effect shows that drivers’ baseline scenario and navigation scenario exhibit significantly less demand on the second day. However, the number of missed events across manoeuvres confirmed that drivers can detect significantly more events on the second day for all scenarios. Distraction was also examined separately for five groups of manoeuvres (straight, lane changing, overtaking, braking for intersections and braking for roundabouts), in two locations for each condition. Repeated measures mixed ANOVA results show that reading an eco-driving message can potentially impair driving performance. When comparing the three in–vehicle distractions tested, attending to an eco-driving message is similar in effect to the CD changing task. The navigation task degraded driver performance much more than these other sources of distraction. In lane changing manoeuvres, drivers’ missed response counts degraded when they engaged in reading eco-driving messages at the first location. However, drivers’ event detection abilities deteriorated less at the second lane changing location. In baseline manoeuvres (driving straight), participants’ mean minimum speed degraded more in the CD changing scenario. Drivers’ lateral position shifted more in both CD changing and navigation tasks in comparison with both eco-driving and baseline scenarios, so they were more visually distracting. Participants were better at event detection in baseline manoeuvres in comparison with other manoeuvres. When approaching an intersection, the navigation task caused more events to be missed by participants, whereas eco-driving messages seemed to make drivers less distracted. The eco-driving message scenario was significantly less distracting than the navigation system scenario (fewer missed responses) when participants commenced braking for roundabouts. To sum up, in spite of the finding that two other in-vehicle tasks are more distracting than the eco-driving task, the results indicate that even reading a simple message while driving could potentially lead to missing an important event, especially when executing critical manoeuvres. This suggests that in-vehicle eco-driving systems have the potential to contribute to increased crash risk through distraction. However, there is some evidence of a practice effect which suggests that future research should focus on performance with habitual rather than novel tasks. It is recommended that eco-driving messages be delivered to drivers off-line when possible.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Global Navigation Satellite Systems (GNSS)-based observation systems can provide high precision positioning and navigation solutions in real time, in the order of subcentimetre if we make use of carrier phase measurements in the differential mode and deal with all the bias and noise terms well. However, these carrier phase measurements are ambiguous due to unknown, integer numbers of cycles. One key challenge in the differential carrier phase mode is to fix the integer ambiguities correctly. On the other hand, in the safety of life or liability-critical applications, such as for vehicle safety positioning and aviation, not only is high accuracy required, but also the reliability requirement is important. This PhD research studies to achieve high reliability for ambiguity resolution (AR) in a multi-GNSS environment. GNSS ambiguity estimation and validation problems are the focus of the research effort. Particularly, we study the case of multiple constellations that include initial to full operations of foreseeable Galileo, GLONASS and Compass and QZSS navigation systems from next few years to the end of the decade. Since real observation data is only available from GPS and GLONASS systems, the simulation method named Virtual Galileo Constellation (VGC) is applied to generate observational data from another constellation in the data analysis. In addition, both full ambiguity resolution (FAR) and partial ambiguity resolution (PAR) algorithms are used in processing single and dual constellation data. Firstly, a brief overview of related work on AR methods and reliability theory is given. Next, a modified inverse integer Cholesky decorrelation method and its performance on AR are presented. Subsequently, a new measure of decorrelation performance called orthogonality defect is introduced and compared with other measures. Furthermore, a new AR scheme considering the ambiguity validation requirement in the control of the search space size is proposed to improve the search efficiency. With respect to the reliability of AR, we also discuss the computation of the ambiguity success rate (ASR) and confirm that the success rate computed with the integer bootstrapping method is quite a sharp approximation to the actual integer least-squares (ILS) method success rate. The advantages of multi-GNSS constellations are examined in terms of the PAR technique involving the predefined ASR. Finally, a novel satellite selection algorithm for reliable ambiguity resolution called SARA is developed. In summary, the study demonstrats that when the ASR is close to one, the reliability of AR can be guaranteed and the ambiguity validation is effective. The work then focuses on new strategies to improve the ASR, including a partial ambiguity resolution procedure with a predefined success rate and a novel satellite selection strategy with a high success rate. The proposed strategies bring significant benefits of multi-GNSS signals to real-time high precision and high reliability positioning services.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis presents a novel approach to mobile robot navigation using visual information towards the goal of long-term autonomy. A novel concept of a continuous appearance-based trajectory is proposed in order to solve the limitations of previous robot navigation systems, and two new algorithms for mobile robots, CAT-SLAM and CAT-Graph, are presented and evaluated. These algorithms yield performance exceeding state-of-the-art methods on public benchmark datasets and large-scale real-world environments, and will help enable widespread use of mobile robots in everyday applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Current state of the art robot mapping and navigation systems produce impressive performance under a narrow range of robot platform, sensor and environmental conditions, in contrast to animals such as rats that produce “good enough” maps that enable them to function under an incredible range of situations. In this paper we present a rat-inspired featureless sensor-fusion system that assesses the usefulness of multiple sensor modalities based on their utility and coherence for place recognition, without knowledge as to the type of sensor. We demonstrate the system on a Pioneer robot in indoor and outdoor environments with abrupt lighting changes. Through dynamic weighting of the sensors, the system is able to perform correct place recognition and mapping where the static sensor weighting approach fails.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The vast majority of current robot mapping and navigation systems require specific well-characterized sensors that may require human-supervised calibration and are applicable only in one type of environment. Furthermore, if a sensor degrades in performance, either through damage to itself or changes in environmental conditions, the effect on the mapping system is usually catastrophic. In contrast, the natural world presents robust, reasonably well-characterized solutions to these problems. Using simple movement behaviors and neural learning mechanisms, rats calibrate their sensors for mapping and navigation in an incredibly diverse range of environments and then go on to adapt to sensor damage and changes in the environment over the course of their lifetimes. In this paper, we introduce similar movement-based autonomous calibration techniques that calibrate place recognition and self-motion processes as well as methods for online multisensor weighting and fusion. We present calibration and mapping results from multiple robot platforms and multisensory configurations in an office building, university campus, and forest. With moderate assumptions and almost no prior knowledge of the robot, sensor suite, or environment, the methods enable the bio-inspired RatSLAM system to generate topologically correct maps in the majority of experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, an integrated inter-vehicles wireless communications and positioning system supporting alternate positioning techniques is proposed to meet the requirements of safety applications of Cooperative Intelligent Transportation Systems (C-ITS). Recent advances have repeatedly demonstrated that road safety problems can be to a large extent addressed via a range of technologies including wireless communications and positioning in vehicular environments. The novel communication stack utilizing a dedicated frequency spectrum (e.g. at 5.9 GHz band), known as Dedicated Short-Range Communications (DSRC), has been particularly designed for Wireless Access in Vehicular Environments (WAVE) to support safety applications in highly dynamic environments. Global Navigation Satellite Systems (GNSS) is another essential enabler to support safety on rail and roads. Although current vehicle navigation systems such as single frequency Global Positioning System (GPS) receivers can provide route guidance with 5-10 meters (road-level) position accuracy, positioning systems utilized in C-ITS must provide position solutions with lane-level and even in-lane-level accuracies based on the requirements of safety applications. This article reviews the issues and technical approaches that are involved in designing a vehicular safety communications and positioning architecture; it also provides technological solutions to further improve vehicular safety by integrating the DSRC and GNSS-based positioning technologies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a method to enable a mobile robot working in non-stationary environments to plan its path and localize within multiple map hypotheses simultaneously. The maps are generated using a long-term and short-term memory mechanism that ensures only persistent configurations in the environment are selected to create the maps. In order to evaluate the proposed method, experimentation is conducted in an office environment. Compared to navigation systems that use only one map, our system produces superior path planning and navigation in a non-stationary environment where paths can be blocked periodically, a common scenario which poses significant challenges for typical planners.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of GNSS tracked Lagrangian drifters allows more realistic quantification of fluid motion and dispersion coefficients than Eulerian techniques because such drifters are analogues of particles that are relevant to flow field characterisation and pollutant dispersion. Using the fast growing Real Time Kinematic (RTK) positioning technique derived from Global Satellite Navigation Systems (GNSS), drifters are developed for high frequency (10 Hz) sampling with position estimates to centimetre accuracy. The drifters are designed with small size and less direct wind drag to follow the sub-surface flow which characterizes dispersion in shallow waters. An analysis of position error from stationary observation indicates that the drifter can efficiently resolve motion up to 1 Hz. The result of the field deployments of the drifter in conjunction with acoustic Eulerian devices shows higher estimate of the drifter streamwise velocities. Single particle statistical analysis of field deployments in a shallow estuarine zone yielded dispersion coefficients estimate comparable to those of dye tracer studies. The drifters capture the tidal elevation during field studies in a tidal estuary.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the results of an experimental program for evaluating sensors and sensing technologies in an underground mining applications. The objective of the experiments is to infer what combinations of sensors will provide reliable navigation systems for autonomous vehicles operating in a harsh underground environment. Results from a wide range of sensors are presented and analysed. Conclusions as to a best combination of sensors are drawn.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The emergence of multiple satellite navigation systems, including BDS, Galileo, modernized GPS, and GLONASS, brings great opportunities and challenges for precise point positioning (PPP). We study the contributions of various GNSS combinations to PPP performance based on undifferenced or raw observations, in which the signal delays and ionospheric delays must be considered. A priori ionospheric knowledge, such as regional or global corrections, strengthens the estimation of ionospheric delay parameters. The undifferenced models are generally more suitable for single-, dual-, or multi-frequency data processing for single or combined GNSS constellations. Another advantage over ionospheric-free PPP models is that undifferenced models avoid noise amplification by linear combinations. Extensive performance evaluations are conducted with multi-GNSS data sets collected from 105 MGEX stations in July 2014. Dual-frequency PPP results from each single constellation show that the convergence time of undifferenced PPP solution is usually shorter than that of ionospheric-free PPP solutions, while the positioning accuracy of undifferenced PPP shows more improvement for the GLONASS system. In addition, the GLONASS undifferenced PPP results demonstrate performance advantages in high latitude areas, while this impact is less obvious in the GPS/GLONASS combined configuration. The results have also indicated that the BDS GEO satellites have negative impacts on the undifferenced PPP performance given the current “poor” orbit and clock knowledge of GEO satellites. More generally, the multi-GNSS undifferenced PPP results have shown improvements in the convergence time by more than 60 % in both the single- and dual-frequency PPP results, while the positioning accuracy after convergence indicates no significant improvements for the dual-frequency PPP solutions, but an improvement of about 25 % on average for the single-frequency PPP solutions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a novel RTK-based GNSS Lagrangian drifter system that is capable of monitoring water velocity, turbulence and dispersion coefficients of river and estuarine. The Lagrangian drifters use the dual-frequency real time kinematic (RTK) technique for both position and velocity estimations. The capsule is designed to meet the requirements such as minimizing height, diameter, minimizing the direct wind drag, positive buoyancy for satellite signal reception and stability, and waterproof housing for electronic components, such as GNSS receiver and computing board. The collected GNSS data are processed with post-processing RTK software. Several experiments have been carried out in two rivers in Brisbane and Sunshine Coast in Queensland. Results show that the high accuracy GNSS-drifters can be used to measure dispersion coefficient resulting from sub-tidal velocity fluctuations in shallow tidal water. In addition, the RTK-GNSS drifters respond well to vertical motion and thus could be applicable to flood monitoring.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes a number of techniques for GNSS navigation message authentication. A detailed analysis of the security facilitated by navigation message authentication is given. The analysis takes into consideration the risk of critical applications that rely on GPS including transportation, finance and telecommunication networks. We propose a number of cryptographic authentication schemes for navigation data authentication. These authentication schemes provide authenticity and integrity of the navigation data to the receiver. Through software simulation, the performance of the schemes is quantified. The use of software simulation enables the collection of authentication performance data of different data channels, and the impact of various schemes on the infrastructure and receiver. Navigation message authentication schemes have been simulated at the proposed data rates of Galileo and GPS services, for which the resulting performance data is presented. This paper concludes by making recommendations for optimal implementation of navigation message authentication for Galileo and next generation GPS systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis presents social requirements and design considerations from a study evaluating interactive approaches to social navigation and user-generated information sharing in urban environments using mobile devices. It investigates innovative ways to leverage mobile information and communication technology in order to provide a social navigation platform for residents and visitors in and for public urban places. Through a design case study this work presents CityFlocks, a mobile information system that offers an easy way for information-seeking new residents or visitors to access tacit knowledge from local people about their new community. It is intended to enable visitors and new residents in a city to tap into the knowledge and experiences of local residents in order to gather information about their new environment. Its design specifically aims to lower existing barriers of access and facilitate social navigation in urban places. In various user tests it evaluates two general user interaction alternatives – direct and indirect social navigation – and analyses which interaction method works better for people using a mobile device to socially navigate urban environments. The outcomes are relevant for the user interaction design of future mobile information systems that leverage the social navigation approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development of global navigation satellite systems (GNSS) provides a solution of many applied problems with increasingly higher quality and accuracy nowadays. Researches that are carried out by the Bavarian Academy of Sciences and Humanities in Munich (BAW) in the field of airborne gravimetry are based on sophisticated data processing from high frequency GNSS receiver for kinematic aircraft positioning. Applied algorithms for inertial acceleration determination are based on the high sampling rate (50Hz) and on reducing of such factors as ionosphere scintillation and multipath at aircraft /antenna near field effects. The quality of the GNSS derived kinematic height are studied also by intercomparison with lift height variations collected by a precise high sampling rate vertical scale [1]. This work is aimed at the ways of more accurate determination of mini-aircraft altitude by means of high frequency GNSS receivers, in particular by considering their dynamic behaviour.