155 resultados para Models of contracting services
Resumo:
This Paper first provides a review and analysis of the recent trends on innovation infrastructures developed in industrialised countries to promote innovation and competitiveness for high growth SMEs. It specifically aims to examine various spatial models developed to support provision of innovation infrastructure for high growth sector.
Resumo:
Consumers' evolving relationships with their mobile devices and their desire to access mobile services (m-services) present new opportunities to marketers, yet little research has been conducted in the area of m-services. Using structural equation modelling, this paper examines the effect of hedonic and utilitarian value of mobile phones on product and purchase involvement. It also investigates the effect of involvement, innovativeness, and self-efficacy on use of m-services. Data were collected from a convenience sample of 250 respondents using an online survey and a modified snowball procedure. Findings are discussed, further implications for managers are suggested and directions for future research are proposed.
Resumo:
Inward export activities for services companies have been largely neglected in the literature. Little is known about how professional service firms export to overseas consumers who travel to the domestic market of the firm. This study utilizes a resource-based perspective (RBV) to explore the main barriers and drivers of export performance for professional education services. A case study of Australia’s education industry, as well as interviews with executives from four Australian education institutions, was conducted. Findings show that inward exporters confront most barriers in the domestic market where the service is provided, and drivers of export performance combine firm- and country-specific resources.
Resumo:
The validation of Computed Tomography (CT) based 3D models takes an integral part in studies involving 3D models of bones. This is of particular importance when such models are used for Finite Element studies. The validation of 3D models typically involves the generation of a reference model representing the bones outer surface. Several different devices have been utilised for digitising a bone’s outer surface such as mechanical 3D digitising arms, mechanical 3D contact scanners, electro-magnetic tracking devices and 3D laser scanners. However, none of these devices is capable of digitising a bone’s internal surfaces, such as the medullary canal of a long bone. Therefore, this study investigated the use of a 3D contact scanner, in conjunction with a microCT scanner, for generating a reference standard for validating the internal and external surfaces of a CT based 3D model of an ovine femur. One fresh ovine limb was scanned using a clinical CT scanner (Phillips, Brilliance 64) with a pixel size of 0.4 mm2 and slice spacing of 0.5 mm. Then the limb was dissected to obtain the soft tissue free bone while care was taken to protect the bone’s surface. A desktop mechanical 3D contact scanner (Roland DG Corporation, MDX 20, Japan) was used to digitise the surface of the denuded bone. The scanner was used with the resolution of 0.3 × 0.3 × 0.025 mm. The digitised surfaces were reconstructed into a 3D model using reverse engineering techniques in Rapidform (Inus Technology, Korea). After digitisation, the distal and proximal parts of the bone were removed such that the shaft could be scanned with a microCT (µCT40, Scanco Medical, Switzerland) scanner. The shaft, with the bone marrow removed, was immersed in water and scanned with a voxel size of 0.03 mm3. The bone contours were extracted from the image data utilising the Canny edge filter in Matlab (The Mathswork).. The extracted bone contours were reconstructed into 3D models using Amira 5.1 (Visage Imaging, Germany). The 3D models of the bone’s outer surface reconstructed from CT and microCT data were compared against the 3D model generated using the contact scanner. The 3D model of the inner canal reconstructed from the microCT data was compared against the 3D models reconstructed from the clinical CT scanner data. The disparity between the surface geometries of two models was calculated in Rapidform and recorded as average distance with standard deviation. The comparison of the 3D model of the whole bone generated from the clinical CT data with the reference model generated a mean error of 0.19±0.16 mm while the shaft was more accurate(0.08±0.06 mm) than the proximal (0.26±0.18 mm) and distal (0.22±0.16 mm) parts. The comparison between the outer 3D model generated from the microCT data and the contact scanner model generated a mean error of 0.10±0.03 mm indicating that the microCT generated models are sufficiently accurate for validation of 3D models generated from other methods. The comparison of the inner models generated from microCT data with that of clinical CT data generated an error of 0.09±0.07 mm Utilising a mechanical contact scanner in conjunction with a microCT scanner enabled to validate the outer surface of a CT based 3D model of an ovine femur as well as the surface of the model’s medullary canal.
Resumo:
Australia needs highly skilled workers to sustain a healthy economy. Current employment-based training models have limitations in meeting the demands for highly skilled labour supply. The research explored current and emerging models of employment-based training to propose more effective models at higher VET qualifications that can maintain a balance between institution and work-based learning.
Resumo:
Cognitive modelling of phenomena in clinical practice allows the operationalisation of otherwise diffuse descriptive terms such as craving or flashbacks. This supports the empirical investigation of the clinical phenomena and the development of targeted treatment interventions. This paper focuses on the cognitive processes underpinning craving, which is recognised as a motivating experience in substance dependence. We use a high-level cognitive architecture, Interacting Cognitive Subsystems (ICS), to compare two theories of craving: Tiffany's theory, centred on the control of automated action schemata, and our own Elaborated Intrusion theory of craving. Data from a questionnaire study of the subjective aspects of everyday desires experienced by a large non-clinical population are presented. Both the data and the high-level modelling support the central claim of the Elaborated Intrusion theory that imagery is a key element of craving, providing the subjective experience and mediating much of the associated disruption of concurrent cognition.
Resumo:
This chapter will address psychodynamic, cognitive-behavioural, and developmental models in supervision by initially considering the historical underpinnings of each and then examining in turn some of the key processes that are evident in the supervisory relationships. Case studies are included where appropriate to highlight the application of theory to practice and several processes are fully elaborated over all models to enable a contemporary view of style and substance in the supervision context.
Resumo:
This paper is aimed at investigating the effect of web openings on the plastic bending behaviour and section moment capacity of a new cold-formed steel beam known as LiteSteel beam (LSB) using numerical modelling. Different LSB sections with varying circular hole diameter and spacing were considered. A simplified but appropriate numerical modelling technique was developed for the modelling of monosymmetric sections such as LSBs subject to bending, and was used to simulate a series of section moment capacity tests of LSB flexural members with web openings. The buckling and ultimate strength behaviour was investigated in detail and the modeling technique was further improved through a comparison of numerical and experimental results. This paper describes the simplified finite element modeling technique used in this study that includes all the significant behavioural effects affecting the plastic bending behaviour and section moment capacity of LSB sections with web holes. Numerical and test results and associated findings are also presented.
Resumo:
We have developed a new experimental method for interrogating statistical theories of music perception by implementing these theories as generative music algorithms. We call this method Generation in Context. This method differs from most experimental techniques in music perception in that it incorporates aesthetic judgments. Generation In Context is designed to measure percepts for which the musical context is suspected to play an important role. In particular the method is suitable for the study of perceptual parameters which are temporally dynamic. We outline a use of this approach to investigate David Temperley’s (2007) probabilistic melody model, and provide some provisional insights as to what is revealed about the model. We suggest that Temperley’s model could be improved by dynamically modulating the probability distributions according to the changing musical context.