393 resultados para Mobile telelavoro Tecnologia device BYOD
Resumo:
When using a mobile device to control a cursor on a large shared display, the interaction must be carefully planned to match the environment and purpose of the systems use. We describe a ‘democratic jukebox’ system that revealed five recommendations that should be considered when designing this type of interaction relating to providing feedback to the user; how to represent users in a multi-cursor based system; where people tend to look and their expectation of how to move their cursor; the orientation of screens and the social context; and, the use of simulated users to give the real users a sense that they are engaging with a greater audience.
Resumo:
This paper presents Secret SLQ, a pervasive mobile game that aims to encourage eight to fourteen year olds to engage with the State Library of Queensland. The game sets out to encourage people to visit and explore the library, as well as educate a generation of young people and parents who may visit the library but have no idea of the treasures that it holds. The research explores how smartphone technology can be used to deliver an engaging and educational experience. The game aims to provide a fun and interactive way to guide participants through a multi-leveled library building, to search for unique QR codes to unlock clues, answer quiz questions and progress further up a leaderboard. This paper outlines the design and initial deployment of the game, reporting on results from a usability study and discussing initial observations made by librarians. Findings indicate that the mobile platform is suitable for delivering such experiences but consideration is needed when embedding games in such large environments so as not to confuse players as they play.
Resumo:
The increase in the availability and use of portable mobile devices has had a number of impacts on society. In particular, this impact has been seen within Higher Education Institutions where staff and students are using these devices for both simple and complex tasks. Within undergraduate teacher education courses there is an expectation that students will be fully prepared for teaching their respective areas of expertise as well as having the ability to use ICT, and in particular portable mobile devices, to support teaching and learning. This paper reports on a small case study into the use of portable mobile devices in a science unit, where the students (N=16) bring their own devices into the classroom and use them in lectures, tutorials and workshops. The study highlights the changing nature of classroom practice within the university setting and the challenges faced by teaching staff and students when using these devices.
Resumo:
Modern mobile computing devices are versatile, but bring the burden of constant settings adjustment according to the current conditions of the environment. While until today, this task has to be accomplished by the human user, the variety of sensors usually deployed in such a handset provides enough data for autonomous self-configuration by a learning, adaptive system. However, this data is not fully available at certain points in time, or can contain false values. Handling potentially incomplete sensor data to detect context changes without a semantic layer represents a scientific challenge which we address with our approach. A novel machine learning technique is presented - the Missing-Values-SOM - which solves this problem by predicting setting adjustments based on context information. Our method is centered around a self-organizing map, extending it to provide a means of handling missing values. We demonstrate the performance of our approach on mobile context snapshots, as well as on classical machine learning datasets.
Resumo:
In the modern connected world, pervasive computing has become reality. Thanks to the ubiquity of mobile computing devices and emerging cloud-based services, the users permanently stay connected to their data. This introduces a slew of new security challenges, including the problem of multi-device key management and single-sign-on architectures. One solution to this problem is the utilization of secure side-channels for authentication, including the visual channel as vicinity proof. However, existing approaches often assume confidentiality of the visual channel, or provide only insufficient means of mitigating a man-in-the-middle attack. In this work, we introduce QR-Auth, a two-step, 2D barcode based authentication scheme for mobile devices which aims specifically at key management and key sharing across devices in a pervasive environment. It requires minimal user interaction and therefore provides better usability than most existing schemes, without compromising its security. We show how our approach fits in existing authorization delegation and one-time-password generation schemes, and that it is resilient to man-in-the-middle attacks.
Resumo:
The increasing demand for mobile video has attracted much attention from both industry and researchers. To satisfy users and to facilitate the usage of mobile video, providing optimal quality to the users is necessary. As a result, quality of experience (QoE) becomes an important focus in measuring the overall quality perceived by the end-users, from the aspects of both objective system performance and subjective experience. However, due to the complexity of user experience and diversity of resources (such as videos, networks and mobile devices), it is still challenging to develop QoE models for mobile video that can represent how user-perceived value varies with changing conditions. Previous QoE modelling research has two main limitations: aspects influencing QoE are insufficiently considered; and acceptability as the user value is seldom studied. Focusing on the QoE modelling issues, two aims are defined in this thesis: (i) investigating the key influencing factors of mobile video QoE; and (ii) establishing QoE prediction models based on the relationships between user acceptability and the influencing factors, in order to help provide optimal mobile video quality. To achieve the first goal, a comprehensive user study was conducted. It investigated the main impacts on user acceptance: video encoding parameters such as quantization parameter, spatial resolution, frame rate, and encoding bitrate; video content type; mobile device display resolution; and user profiles including gender, preference for video content, and prior viewing experience. Results from both quantitative and qualitative analysis revealed the significance of these factors, as well as how and why they influenced user acceptance of mobile video quality. Based on the results of the user study, statistical techniques were used to generate a set of QoE models that predict the subjective acceptability of mobile video quality by using a group of the measurable influencing factors, including encoding parameters and bitrate, content type, and mobile device display resolution. Applying the proposed QoE models into a mobile video delivery system, optimal decisions can be made for determining proper video coding parameters and for delivering most suitable quality to users. This would lead to consistent user experience on different mobile video content and efficient resource allocation. The findings in this research enhance the understanding of user experience in the field of mobile video, which will benefit mobile video design and research. This thesis presents a way of modelling QoE by emphasising user acceptability of mobile video quality, which provides a strong connection between technical parameters and user-desired quality. Managing QoE based on acceptability promises the potential for adapting to the resource limitations and achieving an optimal QoE in the provision of mobile video content.
Resumo:
The invention relates to a method for monitoring user activity on a mobile device, comprising an input and an output unit, comprising the following steps preferably in the following order: detecting and / or logging user activity on said input unit, identifying a foreground running application, hashing of a user-interface-element management list of the foreground running application, and creating a screenshot comprising items displayed on said input unit. The invention also relates to a method for analyzing user activity at a server, comprising the following step: obtaining at least one of an information about detected and / or logged user activity, an information about a foreground running application, a hashed user-interface-element management list and a screenshot from a mobile device. Further, a computer program product is provided, comprising one or more computer readable media having computer executable instructions for performing the steps of at least one of the aforementioned methods.
Resumo:
The use of mobile devices and social media technologies are becoming all-pervasive in society: they are both transformative and constant. The high levels of mobile device ownership and increased access to social media technologies enables the potential for ‘anytime, anywhere’ cooperation and collaboration in education. While recent reports into emerging technologies in higher education predict an increase in the use of mobile devices and social media technologies (Horizon Report, 2013), there is a lack of theory-based research to indicate how these technologies can be most effectively harnessed to support and enhance student learning and what the impacts of these technologies are on both students and educators. In response to the need to understand how these technologies can be better embraced within higher education, this study investigated how first year education students used mobile devices and social media technologies. More specifically, the study identified how students spent most of their time when connected online with mobile devices and social media technologies and whether the online connected time engaged them in their learning or whether it was a distraction.
Resumo:
Quality of experience (QoE) measures the overall perceived quality of mobile video delivery from subjective user experience and objective system performance. Current QoE computing models have two main limitations: 1) insufficient consideration of the factors influencing QoE, and; 2) limited studies on QoE models for acceptability prediction. In this paper, a set of novel acceptability-based QoE models, denoted as A-QoE, is proposed based on the results of comprehensive user studies on subjective quality acceptance assessments. The models are able to predict users’ acceptability and pleasantness in various mobile video usage scenarios. Statistical regression analysis has been used to build the models with a group of influencing factors as independent predictors, including encoding parameters and bitrate, video content characteristics, and mobile device display resolution. The performance of the proposed A-QoE models has been compared with three well-known objective Video Quality Assessment metrics: PSNR, SSIM and VQM. The proposed A-QoE models have high prediction accuracy and usage flexibility. Future user-centred mobile video delivery systems can benefit from applying the proposed QoE-based management to optimize video coding and quality delivery decisions.
Resumo:
The ability to measure surface temperature and represent it on a metrically accurate 3D model has proven applications in many areas such as medical imaging, building energy auditing, and search and rescue. A system is proposed that enables this task to be performed with a handheld sensor, and for the first time with results able to be visualized and analyzed in real-time. A device comprising a thermal-infrared camera and range sensor is calibrated geometrically and used for data capture. The device is localized using a combination of ICP and video-based pose estimation from the thermal-infrared video footage which is shown to reduce the occurrence of failure modes. Furthermore, the problem of misregistration which can introduce severe distortions in assigned surface temperatures is avoided through the use of a risk-averse neighborhood weighting mechanism. Results demonstrate that the system is more stable and accurate than previous approaches, and can be used to accurately model complex objects and environments for practical tasks.
Resumo:
This thesis presents social requirements and design considerations from a study evaluating interactive approaches to social navigation and user-generated information sharing in urban environments using mobile devices. It investigates innovative ways to leverage mobile information and communication technology in order to provide a social navigation platform for residents and visitors in and for public urban places. Through a design case study this work presents CityFlocks, a mobile information system that offers an easy way for information-seeking new residents or visitors to access tacit knowledge from local people about their new community. It is intended to enable visitors and new residents in a city to tap into the knowledge and experiences of local residents in order to gather information about their new environment. Its design specifically aims to lower existing barriers of access and facilitate social navigation in urban places. In various user tests it evaluates two general user interaction alternatives – direct and indirect social navigation – and analyses which interaction method works better for people using a mobile device to socially navigate urban environments. The outcomes are relevant for the user interaction design of future mobile information systems that leverage the social navigation approach.
Resumo:
To provide card holder authentication while they are conducting an electronic transaction using mobile devices, VISA and MasterCard independently proposed two electronic payment protocols: Visa 3D Secure and MasterCard Secure Code. The protocols use pre-registered passwords to provide card holder authentication and Secure Socket Layer/ Transport Layer Security (SSL/TLS) for data confidentiality over wired networks and Wireless Transport Layer Security (WTLS) between a wireless device and a Wireless Application Protocol (WAP) gateway. The paper presents our analysis of security properties in the proposed protocols using formal method tools: Casper and FDR2. We also highlight issues concerning payment security in the proposed protocols.
Resumo:
Accurate three-dimensional representations of cultural heritage sites are highly valuable for scientific study, conservation, and educational purposes. In addition to their use for archival purposes, 3D models enable efficient and precise measurement of relevant natural and architectural features. Many cultural heritage sites are large and complex, consisting of multiple structures spatially distributed over tens of thousands of square metres. The process of effectively digitising such geometrically complex locations requires measurements to be acquired from a variety of viewpoints. While several technologies exist for capturing the 3D structure of objects and environments, none are ideally suited to complex, large-scale sites, mainly due to their limited coverage or acquisition efficiency. We explore the use of a recently developed handheld mobile mapping system called Zebedee in cultural heritage applications. The Zebedee system is capable of efficiently mapping an environment in three dimensions by continually acquiring data as an operator holding the device traverses through the site. The system was deployed at the former Peel Island Lazaret, a culturally significant site in Queensland, Australia, consisting of dozens of buildings of various sizes spread across an area of approximately 400 × 250 m. With the Zebedee system, the site was scanned in half a day, and a detailed 3D point cloud model (with over 520 million points) was generated from the 3.6 hours of acquired data in 2.6 hours. We present results demonstrating that Zebedee was able to accurately capture both site context and building detail comparable in accuracy to manual measurement techniques, and at a greatly increased level of efficiency and scope. The scan allowed us to record derelict buildings that previously could not be measured because of the scale and complexity of the site. The resulting 3D model captures both interior and exterior features of buildings, including structure, materials, and the contents of rooms.
Resumo:
The access to mobile technologies is growing at an exponential rate in developed and developing countries, with some developing countries surpassing developed countries in terms of device ownership. It is both the demand for, and high usage of mobile technologies that have driven new and emerging pedagogical practices in higher education. These technologies have also exponentially increased access to information in a knowledge economy. While differences are often drawn between developing and developed countries in terms of the access and use of information and communication technologies (ICT), this paper will report on a study detailing how higher education students use mobile technologies and social media in their studies and in their personal lives. It will contrast the similarities in how students from an Australian and Vietnamese university access and use mobile and social media technologies while also highlighting ways in which these technologies can be embraced by academics to connect and engage with students.
Resumo:
Current mobile devices and streaming video services support high definition (HD) video, increasing expectation for more contents. HD video streaming generally requires large bandwidth, exerting pressures on existing networks. New generation of video compression codecs, such as VP9 and H.265/HEVC, are expected to be more effective for reducing bandwidth. Existing studies to measure the impact of its compression on users’ perceived quality have not been focused on mobile devices. Here we propose new Quality of Experience (QoE) models that consider both subjective and objective assessments of mobile video quality. We introduce novel predictors, such as the correlations between video resolution and size of coding unit, and achieve a high goodness-of-fit to the collected subjective assessment data (adjusted R-square >83%). The performance analysis shows that H.265 can potentially achieve 44% to 59% bit rate saving compared to H.264/AVC, slightly better than VP9 at 33% to 53%, depending on video content and resolution.