167 resultados para Mobile ad hoc Networks
Resumo:
As the use of Twitter has become more commonplace throughout many nations, its role in political discussion has also increased. This has been evident in contexts ranging from general political discussion through local, state, and national elections (such as in the 2010 Australian elections) to protests and other activist mobilisation (for example in the current uprisings in Tunisia, Egypt, and Yemen, as well as in the controversy around Wikileaks). Research into the use of Twitter in such political contexts has also developed rapidly, aided by substantial advancements in quantitative and qualitative methodologies for capturing, processing, analysing, and visualising Twitter updates by large groups of users. Recent work has especially highlighted the role of the Twitter hashtag – a short keyword, prefixed with the hash symbol ‘#’ – as a means of coordinating a distributed discussion between more or less large groups of users, who do not need to be connected through existing ‘follower’ networks. Twitter hashtags – such as ‘#ausvotes’ for the 2010 Australian elections, ‘#londonriots’ for the coordination of information and political debates around the recent unrest in London, or ‘#wikileaks’ for the controversy around Wikileaks thus aid the formation of ad hoc publics around specific themes and topics. They emerge from within the Twitter community – sometimes as a result of pre-planning or quickly reached consensus, sometimes through protracted debate about what the appropriate hashtag for an event or topic should be (which may also lead to the formation of competing publics using different hashtags). Drawing on innovative methodologies for the study of Twitter content, this paper examines the use of hashtags in political debate in the context of a number of major case studies.
Resumo:
The requirement of isolated relays is one of the prime obstacles in utilizing sequential slotted cooperative protocols for Vehicular Ad-hoc Networks (VANET). Significant research advancement has taken place to improve the diversity multiplexing trade-off (DMT) of cooperative protocols in conventional mobile networks without much attention on vehicular ad-hoc networks. We have extended the concept of sequential slotted amplify and forward (SAF) protocols in the context of urban vehicular ad-hoc networks. Multiple Input Multiple Output (MIMO) reception is used at relaying vehicular nodes to isolate the relays effectively. The proposed approach adds a pragmatic value to the sequential slotted cooperative protocols while achieving attractive performance gains in urban VANETs. We have analysed the DMT bounds and the outage probabilities of the proposed scheme. The results suggest that the proposed scheme can achieve an optimal DMT similar to the DMT upper bound of the sequential SAF. Furthermore, the outage performance of the proposed scheme outperforms the SAF protocol by 2.5 dB at a target outage probability of 10-4.
Resumo:
Driving can be a lonely activity. While there has been a lot of research and technical inventions concerning car-to-car communication and passenger entertainment, there is still little work concerning connecting drivers. Whereas tourism is very much a social activity, drive tourists and road trippers have few options to communicate with fellow travelers. Our study is placed at the intersection of tourism and driving. It aims to enhance the trip experience during driving through social interaction. This paper explores how a mobile application that allows instant messaging between travelers sharing similar context can establish a temporary, ad hoc community and enhance the road trip experience. A prototype was developed and evaluated in various user and field studies. The study’s outcomes are relevant for the design of future mobile tourist guides that benefit from community design, social encounters and recommendations.
Resumo:
As the use of Twitter has become more commonplace throughout many nations, its role in political discussion has also increased. This has been evident in contexts ranging from general political discussion through local, state, and national elections (such as in the 2010 Australian elections) to protests and other activist mobilisation (for example in the current uprisings in Tunisia, Egypt, and Yemen, as well as in the controversy around Wikileaks). Research into the use of Twitter in such political contexts has also developed rapidly, aided by substantial advancements in quantitative and qualitative methodologies for capturing, processing, analysing, and visualising Twitter updates by large groups of users. Recent work has especially highlighted the role of the Twitter hashtag – a short keyword, prefixed with the hash symbol ‘#’ – as a means of coordinating a distributed discussion between more or less large groups of users, who do not need to be connected through existing ‘follower’ networks. Twitter hashtags – such as ‘#ausvotes’ for the 2010 Australian elections, ‘#londonriots’ for the coordination of information and political debates around the recent unrest in London, or ‘#wikileaks’ for the controversy around Wikileaks thus aid the formation of ad hoc publics around specific themes and topics. They emerge from within the Twitter community – sometimes as a result of pre-planning or quickly reached consensus, sometimes through protracted debate about what the appropriate hashtag for an event or topic should be (which may also lead to the formation of competing publics using different hashtags). Drawing on innovative methodologies for the study of Twitter content, this paper examines the use of hashtags in political debate in the context of a number of major case studies.
Resumo:
This paper proposes a clustered approach for blind beamfoming from ad-hoc microphone arrays. In such arrangements, microphone placement is arbitrary and the speaker may be close to one, all or a subset of microphones at a given time. Practical issues with such a configuration mean that some microphones might be better discarded due to poor input signal to noise ratio (SNR) or undesirable spatial aliasing effects from large inter-element spacings when beamforming. Large inter-microphone spacings may also lead to inaccuracies in delay estimation during blind beamforming. In such situations, using a cluster of microphones (ie, a sub-array), closely located both to each other and to the desired speech source, may provide more robust enhancement than the full array. This paper proposes a method for blind clustering of microphones based on the magnitude square coherence function, and evaluates the method on a database recorded using various ad-hoc microphone arrangements.
Resumo:
Microphone arrays have been used in various applications to capture conversations, such as in meetings and teleconferences. In many cases, the microphone and likely source locations are known \emph{a priori}, and calculating beamforming filters is therefore straightforward. In ad-hoc situations, however, when the microphones have not been systematically positioned, this information is not available and beamforming must be achieved blindly. In achieving this, a commonly neglected issue is whether it is optimal to use all of the available microphones, or only an advantageous subset of these. This paper commences by reviewing different approaches to blind beamforming, characterising them by the way they estimate the signal propagation vector and the spatial coherence of noise in the absence of prior knowledge of microphone and speaker locations. Following this, a novel clustered approach to blind beamforming is motivated and developed. Without using any prior geometrical information, microphones are first grouped into localised clusters, which are then ranked according to their relative distance from a speaker. Beamforming is then performed using either the closest microphone cluster, or a weighted combination of clusters. The clustered algorithms are compared to the full set of microphones in experiments on a database recorded on different ad-hoc array geometries. These experiments evaluate the methods in terms of signal enhancement as well as performance on a large vocabulary speech recognition task.
Resumo:
This paper gives an overview of the INEX 2009 Ad Hoc Track. The main goals of the Ad Hoc Track were three-fold. The first goal was to investigate the impact of the collection scale and markup, by using a new collection that is again based on a the Wikipedia but is over 4 times larger, with longer articles and additional semantic annotations. For this reason the Ad Hoc track tasks stayed unchanged, and the Thorough Task of INEX 2002–2006 returns. The second goal was to study the impact of more verbose queries on retrieval effectiveness, by using the available markup as structural constraints—now using both the Wikipedia’s layout-based markup, as well as the enriched semantic markup—and by the use of phrases. The third goal was to compare different result granularities by allowing systems to retrieve XML elements, ranges of XML elements, or arbitrary passages of text. This investigates the value of the internal document structure (as provided by the XML mark-up) for retrieving relevant information. The INEX 2009 Ad Hoc Track featured four tasks: For the Thorough Task a ranked-list of results (elements or passages) by estimated relevance was needed. For the Focused Task a ranked-list of non-overlapping results (elements or passages) was needed. For the Relevant in Context Task non-overlapping results (elements or passages) were returned grouped by the article from which they came. For the Best in Context Task a single starting point (element start tag or passage start) for each article was needed. We discuss the setup of the track, and the results for the four tasks.
Resumo:
A Cooperative Collision Warning System (CCWS) is an active safety techno- logy for road vehicles that can potentially reduce traffic accidents. It provides a driver with situational awareness and early warnings of any possible colli- sions through an on-board unit. CCWS is still under active research, and one of the important technical problems is safety message dissemination. Safety messages are disseminated in a high-speed mobile environment using wireless communication technology such as Dedicated Short Range Communication (DSRC). The wireless communication in CCWS has a limited bandwidth and can become unreliable when used inefficiently, particularly given the dynamic nature of road traffic conditions. Unreliable communication may significantly reduce the performance of CCWS in preventing collisions. There are two types of safety messages: Routine Safety Messages (RSMs) and Event Safety Messages (ESMs). An RSM contains the up-to-date state of a vehicle, and it must be disseminated repeatedly to its neighbouring vehicles. An ESM is a warning message that must be sent to all the endangered vehi- cles. Existing RSM and ESM dissemination schemes are inefficient, unscalable, and unable to give priority to vehicles in the most danger. Thus, this study investigates more efficient and scalable RSM and ESM dissemination schemes that can make use of the context information generated from a particular traffic scenario. Therefore, this study tackles three technical research prob- lems, vehicular traffic scenario modelling and context information generation, context-aware RSM dissemination, and context-aware ESM dissemination. The most relevant context information in CCWS is the information about possible collisions among vehicles given a current vehicular traffic situation. To generate the context information, this study investigates techniques to model interactions among multiple vehicles based on their up-to-date motion state obtained via RSM. To date, there is no existing model that can represent interactions among multiple vehicles in a speciffic region and at a particular time. The major outcome from the first problem is a new interaction graph model that can be used to easily identify the endangered vehicles and their danger severity. By identifying the endangered vehicles, RSM and ESM dis- semination can be optimised while improving safety at the same time. The new model enables the development of context-aware RSM and ESM dissemination schemes. To disseminate RSM efficiently, this study investigates a context-aware dis- semination scheme that can optimise the RSM dissemination rate to improve safety in various vehicle densities. The major outcome from the second problem is a context-aware RSM dissemination protocol. The context-aware protocol can adaptively adjust the dissemination rate based on an estimated channel load and danger severity of vehicle interactions given by the interaction graph model. Unlike existing RSM dissemination schemes, the proposed adaptive scheme can reduce channel congestion and improve safety by prioritising ve- hicles that are most likely to crash with other vehicles. The proposed RSM protocol has been implemented and evaluated by simulation. The simulation results have shown that the proposed RSM protocol outperforms existing pro- tocols in terms of efficiency, scalability and safety. To disseminate ESM efficiently, this study investigates a context-aware ESM dissemination scheme that can reduce unnecessary transmissions and deliver ESMs to endangered vehicles as fast as possible. The major outcome from the third problem is a context-aware ESM dissemination protocol that uses a multicast routing strategy. Existing ESM protocols use broadcast rout- ing, which is not efficient because ESMs may be sent to a large number of ve- hicles in the area. Using multicast routing improves efficiency because ESMs are sent only to the endangered vehicles. The endangered vehicles can be identified using the interaction graph model. The proposed ESM protocol has been implemented and evaluated by simulation. The simulation results have shown that the proposed ESM protocol can prevent potential accidents from occurring better than existing ESM protocols. The context model and the RSM and ESM dissemination protocols can be implemented in any CCWS development to improve the communication and safety performance of CCWS. In effect, the outcomes contribute to the realisation of CCWS that will ultimately improve road safety and save lives.
Resumo:
Road traffic accidents can be reduced by providing early warning to drivers through wireless ad hoc networks. When a vehicle detects an event that may lead to an imminent accident, the vehicle disseminates emergency messages to alert other vehicles that may be endangered by the accident. In many existing broadcast-based dissemination schemes, emergency messages may be sent to a large number of vehicles in the area and can be propagated to only one direction. This paper presents a more efficient context aware multicast protocol that disseminates messages only to endangered vehicles that may be affected by the emergency event. The endangered vehicles can be identified by calculating the interaction among vehicles based on their motion properties. To ensure fast delivery, the dissemination follows a routing path obtained by computing a minimum delay tree. The multicast protocol uses a generalized approach that can support any arbitrary road topology. The performance of the multicast protocol is compared with existing broadcast protocols by simulating chain collision accidents on a typical highway. Simulation results show that the multicast protocol outperforms the other protocols in terms of reliability, efficiency, and latency.
Resumo:
Many applications can benefit from the accurate surface temperature estimates that can be made using a passive thermal-infrared camera. However, the process of radiometric calibration which enables this can be both expensive and time consuming. An ad hoc approach for performing radiometric calibration is proposed which does not require specialized equipment and can be completed in a fraction of the time of the conventional method. The proposed approach utilizes the mechanical properties of the camera to estimate scene temperatures automatically, and uses these target temperatures to model the effect of sensor temperature on the digital output. A comparison with a conventional approach using a blackbody radiation source shows that the accuracy of the method is sufficient for many tasks requiring temperature estimation. Furthermore, a novel visualization method is proposed for displaying the radiometrically calibrated images to human operators. The representation employs an intuitive coloring scheme and allows the viewer to perceive a large variety of temperatures accurately.
Resumo:
Process models are usually depicted as directed graphs, with nodes representing activities and directed edges control flow. While structured processes with pre-defined control flow have been studied in detail, flexible processes including ad-hoc activities need further investigation. This paper presents flexible process graph, a novel approach to model processes in the context of dynamic environment and adaptive process participants’ behavior. The approach allows defining execution constraints, which are more restrictive than traditional ad-hoc processes and less restrictive than traditional control flow, thereby balancing structured control flow with unstructured ad-hoc activities. Flexible process graph focuses on what can be done to perform a process. Process participants’ routing decisions are based on the current process state. As a formal grounding, the approach uses hypergraphs, where each edge can associate any number of nodes. Hypergraphs are used to define execution semantics of processes formally. We provide a process scenario to motivate and illustrate the approach.