850 resultados para Mathematics knowledge
Resumo:
This paper reports on Years 8, 9 and 10 students’ knowledge of percent problem types, use of diagrams, and type of solution strategy. Non- and semi-proficient students displayed the expected inflexible formula approach to solution but proficient students used a flexible mixture of estimation, number sense and trial and error instead of expected schema based methods.
Resumo:
Any theory of thinking or teaching or learning rests on an underlying philosophy of knowledge. Mathematics education is situated at the nexus of two fields of inquiry, namely mathematics and education. However, numerous other disciplines interact with these two fields which compound the complexity of developing theories that define mathematics education. We first address the issue of clarifying a philosophy of mathematics education before attempting to answer whether theories of mathematics education are constructible? In doing so we draw on the foundational writings of Lincoln and Guba (1994), in which they clearly posit that any discipline within education, in our case mathematics education, needs to clarify for itself the following questions: (1) What is reality? Or what is the nature of the world around us? (2) How do we go about knowing the world around us? [the methodological question, which presents possibilities to various disciplines to develop methodological paradigms] and, (3) How can we be certain in the “truth” of what we know? [the epistemological question]
Resumo:
This paper reports on students’ ability to decode mathematical graphics. The findings were: (a) some items showed an insignificant improvement over time; (b) success involves identifying critical perceptual elements in the graphic and incorporating these elements into a solution strategy; and (c) the optimal strategy capitalises on how information is encoded in the graphic. Implications include a need for teachers to be proactive in supporting students’ to develop their graphical knowledge and an awareness that knowledge varies substantially across students.
Resumo:
This paper reports on a mathematics education research project centred on teachers’ pedagogical practices and capacity to assess Indigenous Australian students in a culture-fair manner. The project has been funded by the Australian Research Council Linkage program and is being conducted in seven Catholic and Independent primary schools in north Queensland. Our Industry Partners are Catholic Education and the Association of Independent Schools, Queensland. The study aims to provide greater understanding about how to build more equitable assessment practices to address the issue of underperforming Aboriginal and Torres Strait Islander (ATSI) students in regional and remote Australia. The goal is to identify ways forward by attending to culture-fair assessment practice. The research is exploring the attitudes, beliefs and responses of Indigenous students to assessment in the context of mathematics learning with particular focus on teacher knowledge in these educational settings in relation to the design of assessment tasks that are authentic and engaging for these students in an accountability context. This approach highlights how teachers need to distinguish the ‘funds of knowledge’ (González, Moll, Floyd Tenery, Rivera, Rendón, Gonzales & Amanti, 2008) that Indigenous students draw on and how teachers need to be culturally responsive in their pedagogy to open up curriculum and assessment practice to allow for different ways of knowing and being
Resumo:
Learning to operate algebraically is a complex process that is dependent upon extending arithmetic knowledge to the more complex concepts of algebra. Current research has shown a gap between arithmetic and algebraic knowledge and suggests a pre-algebraic level as a step between the two knowledge types. This paper examines arithmetic and algebraic knowledge from a cognitive perspective in an effort to determine what constitutes a pre-algebraic level of understanding. Results of a longitudinal study designed to investigate students' readiness for algebra are presented. Thirty-three students in Grades 7, 8, and 9 participated. A model for the transition from arithmetic to pre-algebra to algebra is proposed and students' understanding of relevant knowledge is discussed.
Resumo:
Maps are used to represent three-dimensional space and are integral to a range of everyday experiences. They are increasingly used in mathematics, being prominent both in school curricula and as a form of assessing students understanding of mathematics ideas. In order to successfully interpret maps, students need to be able to understand that maps: represent space, have their own perspective and scale, and their own set of symbols and texts. Despite the fact that maps have an increased prevalence in society and school, there is evidence to suggest that students have difficulty interpreting maps. This study investigated 43 primary-aged students’ (aged 9-12 years) verbal and gestural behaviours as they engaged with and solved map tasks. Within a multiliteracies framework that focuses on spatial, visual, linguistic, and gestural elements, the study investigated how students interpret map tasks. Specifically, the study sought to understand students’ skills and approaches used to solving map tasks and the gestural behaviours they utilised as they engaged with map tasks. The investigation was undertaken using the Knowledge Discovery in Data (KDD) design. The design of this study capitalised on existing research data to carry out a more detailed analysis of students’ interpretation of map tasks. Video data from an existing data set was reorganised according to two distinct episodes—Task Solution and Task Explanation—and analysed within the multiliteracies framework. Content Analysis was used with these data and through anticipatory data reduction techniques, patterns of behaviour were identified in relation to each specific map task by looking at task solution, task correctness and gesture use. The findings of this study revealed that students had a relatively sound understanding of general mapping knowledge such as identifying landmarks, using keys, compass points and coordinates. However, their understanding of mathematical concepts pertinent to map tasks including location, direction, and movement were less developed. Successful students were able to interpret the map tasks and apply relevant mathematical understanding to navigate the spatial demands of the map tasks while the unsuccessful students were only able to interpret and understand basic map conventions. In terms of their gesture use, the more difficult the task, the more likely students were to exhibit gestural behaviours to solve the task. The most common form of gestural behaviour was deictic, that is a pointing gesture. Deictic gestures not only aided the students capacity to explain how they solved the map tasks but they were also a tool which assisted them to navigate and monitor their spatial movements when solving the tasks. There were a number of implications for theory, learning and teaching, and test and curriculum design arising from the study. From a theoretical perspective, the findings of the study suggest that gesturing is an important element of multimodal engagement in mapping tasks. In terms of teaching and learning, implications include the need for students to utilise gesturing techniques when first faced with new or novel map tasks. As students become more proficient in solving such tasks, they should be encouraged to move beyond a reliance on such gesture use in order to progress to more sophisticated understandings of map tasks. Additionally, teachers need to provide students with opportunities to interpret and attend to multiple modes of information when interpreting map tasks.
Resumo:
The process of becoming numerate begins in the early years. According to Vygotskian theory (1978), teachers are More Knowledgeable Others who provide and support learning experiences that influence children’s mathematical learning. This paper reports on research that investigates three early childhood teachers mathematics content knowledge. An exploratory, single case study utilised data collected from interviews, and email correspondence to investigate the teachers’ mathematics content knowledge. The data was reviewed according to three analytical strategies: content analysis, pattern matching, and comparative analysis. Findings indicated there was variation in teachers’ content knowledge across the five mathematical strands and that teachers might not demonstrate the depth of content knowledge that is expected of four year specially trained early years’ teachers. A significant factor that appeared to influence these teachers’ content knowledge was their teaching experience. Therefore, an avenue for future research is the investigation of factors that influence teachers’ content numeracy knowledge.
Resumo:
Mathematics education literature has called for an abandonment of ontological and epistemological ideologies that have often divided theory-based practice. Instead, a consilience of theories has been sought which would leverage the strengths of each learning theory and so positively impact upon contemporary educational practice. This research activity is based upon Popper’s notion of three knowledge worlds which differentiates the knowledge shared in a community from the personal knowledge of the individual, and Bereiter’s characterisation of understanding as the individual’s relationship to tool-like knowledge. Using these notions, a re-conceptualisation of knowledge and understanding and a subsequent re-consideration of learning theories are proposed as a way to address the challenge set by literature. Referred to as the alternative theoretical framework, the proposed theory accounts for the scaffolded transformation of each individual’s unique understanding, whilst acknowledging the existence of a body of domain knowledge shared amongst participants in a scientific community of practice. The alternative theoretical framework is embodied within an operational model that is accompanied by a visual nomenclature with which to describe consensually developed shared knowledge and personal understanding. This research activity has sought to iteratively evaluate this proposed theory through the practical application of the operational model and visual nomenclature to the domain of early-number counting, addition and subtraction. This domain of mathematical knowledge has been comprehensively analysed and described. Through this process, the viability of the proposed theory as a tool with which to discuss and thus improve the knowledge and understanding with the domain of mathematics has been validated. Putting of the proposed theory into practice has lead to the theory’s refinement and the subsequent achievement of a solid theoretical base for the future development of educational tools to support teaching and learning practice, including computer-mediated learning environments. Such future activity, using the proposed theory, will advance contemporary mathematics educational practice by bringing together the strengths of cognitivist, constructivist and post-constructivist learning theories.
Resumo:
It is generally agreed that if authentic teacher change is to occur then the tacit knowledge about how and why they act in certain ways in the classroom be accessed and reflected upon. While critical reflection can and often is an individual experience there is evidence to suggest that teachers are more likely to engage in the process when it is approached in a collegial manner; that is, when other teachers are involved in and engaged with the same process. Teachers do not enact their profession in isolation but rather exist within a wider community of teachers. An outside facilitator can also play an active and important role in achieving lasting teacher change. According to Stein and Brown (1997) “an important ingredient in socially based learning is that graduations of expertise and experience exist when teachers collaborate with each other or outside experts” (p. 155). To assist in the effective professional development of teachers, outside facilitators, when used, need to provide “a dynamic energy producing interactive experience in which participants examine and explore the complex components of teaching” (Bolster, 1995, p. 193). They also need to establish rapport with the participating teachers that is built on trust and competence (Hyde, Ormiston, & Hyde, 1994). For this to occur, professional development involving teachers and outside facilitators or researchers should not be a one-off event but an ongoing process of engagement that enables both the energy and trust required to develop. Successful professional development activities are therefore collaborative, relevant and provide individual, specialised attention to the teachers concerned. The project reported here aimed to provide professional development to two Year 3 teachers to enhance their teaching of a new mathematics content area, mental computation. This was achieved through the teachers collaborating with a researcher to design an instructional program for mental computation that drew on theory and research in the field.
Resumo:
To address issues of divisive ideologies in the Mathematics Education community and to subsequently advance educational practice, an alternative theoretical framework and operational model is proposed which represents a consilience of constructivist learning theories whilst acknowledging the objective but improvable nature of domain knowledge. Based upon Popper’s three-world model of knowledge, the proposed theory supports the differentiation and explicit modelling of both shared domain knowledge and idiosyncratic personal understanding using a visual nomenclature. The visual nomenclature embodies Piaget’s notion of reflective abstraction and so may support an individual’s experience-based transformation of personal understanding with regards to shared domain knowledge. Using the operational model and visual nomenclature, seminal literature regarding early-number counting and addition was analysed and described. Exemplars of the resultant visual artefacts demonstrate the proposed theory’s viability as a tool with which to characterise the reflective abstraction-based organisation of a domain’s shared knowledge. Utilising such a description of knowledge, future research needs to consider the refinement of the operational model and visual nomenclature to include the analysis, description and scaffolded transformation of personal understanding. A detailed model of knowledge and understanding may then underpin the future development of educational software tools such as computer-mediated teaching and learning environments.
Resumo:
Early-number is a rich fabric of interconnected ideas that is often misunderstood and thus taught in ways that do not lead to rich understanding. In this presentation, a visual language is used to describe the organisation of this domain of knowledge. This visual language is based upon Piaget’s notion of reflective abstraction (Dubinsky, 1991; Piaget, 1977/2001), and thus captures the epistemological associations that link the problems, concepts and representations of the domain. The constructs of this visual language are introduced and then applied to the early-number domain. The introduction to this visual language may prompt reflection upon its suitability and significance to the description of other domains of knowledge. Through such a process of analysis and description, the visual language may serve as a scaffold for enhancing pedagogical content knowledge and thus ultimately improve learning outcomes.
Resumo:
Goldin (2003) and McDonald, Yanchar, and Osguthorpe (2005) have called for mathematics learning theory that reconciles the chasm between ideologies, and which may advance mathematics teaching and learning practice. This paper discusses the theoretical underpinnings of a recently completed PhD study that draws upon Popper’s (1978) three-world model of knowledge as a lens through which to reconsider a variety of learning theories, including Piaget’s reflective abstraction. Based upon this consideration of theories, an alternative theoretical framework and complementary operational model was synthesised, the viability of which was demonstrated by its use to analyse the domain of early-number counting, addition and subtraction.
Resumo:
This paper reports on a study that focused on growth of understanding about teaching geometry by a group of prospective teachers engaged in lesson plan study within a computer-supported collaborative learning (CSCL) environment. Participation in the activity was found to facilitate considerable growth in the participants’ pedagogical-content knowledge (PCK). Factors that influenced growth in PCK included the nature of the lesson planning task, the cognitive scaffolds inserted into the CSCL virtual space, the meta-language scaffolds provided to the participants, and the provision of both private and public discourse spaces. The paper concludes with recommendations for enhancing effective knowledge-building discourse about mathematics PCK within prospective teacher education CSCL environments.