20 resultados para Luster-ware
Resumo:
Process improvement and innovation are risky endeavors, like swimming in unknown waters. In this chapter, I will discuss how process innovation through BPM can benefit from Research-as-a-Service, that is, from the application of research concepts in the processes of BPM projects. A further subject will be how innovations can be converted from confidence-based to evidence-based models due to affordances of digital infrastructures such as large-scale enterprise soft-ware or social media. I will introduce the relevant concepts, provide illustrations for digital capabilities that allow for innovation, and share a number of key takeaway lessons for how organizations can innovate on the basis of digital opportunities and principles of evidence-based BPM: the foundation of all process decisions in facts rather than fiction.
Resumo:
Fossils provide the principal basis for temporal calibrations, which are critical to the accuracy of divergence dating analyses. Translating fossil data into minimum and maximum bounds for calibrations is the most important, and often least appreciated, step of divergence dating. Properly justified calibrations require the synthesis of phylogenetic, paleontological, and geological evidence and can be difficult for non-specialists to formulate. The dynamic nature of the fossil record (e.g., new discoveries, taxonomic revisions, updates of global or local stratigraphy) requires that calibration data be updated continually lest they become obsolete. Here, we announce the Fossil Calibration Database (http://fossilcalibrations.org), a new open-access resource providing vetted fossil calibrations to the scientific community. Calibrations accessioned into this database are based on individual fossil specimens and follow best practices for phylogenetic justification and geochronological constraint. The associated Fossil Calibration Series, a calibration-themed publication series at Palaeontologia Electronica, will serve as one key pipeline for peer-reviewed calibrations to enter the database.
Resumo:
By the time students reach the middle years they have experienced many chance activities based on dice. Common among these are rolling one die to explore the relationship of frequency and theoretical probability, and rolling two dice and summing the outcomes to consider their probabilities. Although dice may be considered overused by some, the advantage they offer is a familiar context within which to explore much more complex concepts. If the basic chance mechanism of the device is understood, it is possible to enter quickly into an arena of more complex concepts. This is what happened with a two hour activity engaged in by four classes of Grade 6 students in the same school. The activity targeted the concepts of variation and expectation. The teachers held extended discussions with their classes on variation and expectation at the beginning of the activity, with students contributing examples of the two concepts from their own experience. These notions are quite sophisticated for Grade 6, but the underlying concepts describe phenomena that students encounter every day. For example, time varies continuously; sporting results vary from game to game; the maximum temperature varies from day to day. However, there is an expectation about tomorrow’s maximum temperature based on the expert advice from the weather bureau. There may also be an expectation about a sporting result based on the participants’ previous results. It is this juxtaposition that makes life interesting. Variation hence describes the differences we see in phenomena around us. In a scenario displaying variation, expectation describes the effort to characterise or summarise the variation and perhaps make a prediction about the message arising from the scenario. The explicit purpose of the activity described here was to use the familiar scenario of rolling a die to expose these two concepts. Because the students had previously experienced rolling physical dice they knew instinctively about the variation that occurs across many rolls and about the theoretical expectation that each side should “come up” one-sixth of the time. They had observed the instances of the concepts in action, but had not consolidated the underlying terminology to describe it. As the two concepts are so fundamental to understanding statistics, we felt it would be useful to begin building in the familiar environment of rolling a die. Because hand-held dice limit the explorations students can undertake, the classes used the soft-ware TinkerPlots (Konold & Miller, 2011) to simulate rolling a die multiple times.
Resumo:
Homozygosity has long been associated with rare, often devastating, Mendelian disorders1, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness2. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power3, 4. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P < 1 × 10−300, 2.1 × 10−6, 2.5 × 10−10 and 1.8 × 10−10, respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months’ less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples5, 6, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection7, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.