46 resultados para Labor inspection.
Resumo:
This paper presents a maintenance optimisation method for a multi-state series-parallel system considering economic dependence and state-dependent inspection intervals. The objective function considered in the paper is the average revenue per unit time calculated based on the semi-regenerative theory and the universal generating function (UGF). A new algorithm using the stochastic ordering is also developed in this paper to reduce the search space of maintenance strategies and to enhance the efficiency of optimisation algorithms. A numerical simulation is presented in the study to evaluate the efficiency of the proposed maintenance strategy and optimisation algorithms. The simulation result reveals that maintenance strategies with opportunistic maintenance and state-dependent inspection intervals are more cost-effective when the influence of economic dependence and inspection cost is significant. The study further demonstrates that the optimisation algorithm proposed in this paper has higher computational efficiency than the commonly employed heuristic algorithms.
Resumo:
We study discrimination based on the hukou system that segregates citizens in groups of migrants and locals in urban China. We use an artefactual field experiment with a labor market framing. We recruit workers on their real labor market as experimental participants and investigate if official discrimination motivates individual discrimination based on hukou status. In our experimental results we observe discrimination based on the hukou characteristic: however, statistical discrimination does not seem to be the source of this, as status is exogeneous for our participants and migrants and locals behave similarly. Furthermore, discrimination increases between two experimental frameworks when motives for statistical discrimination are removed.
Resumo:
This paper presents a shared autonomy control scheme for a quadcopter that is suited for inspection of vertical infrastructure — tall man-made structures such as streetlights, electricity poles or the exterior surfaces of buildings. Current approaches to inspection of such structures is slow, expensive, and potentially hazardous. Low-cost aerial platforms with an ability to hover now have sufficient payload and endurance for this kind of task, but require significant human skill to fly. We develop a control architecture that enables synergy between the ground-based operator and the aerial inspection robot. An unskilled operator is assisted by onboard sensing and partial autonomy to safely fly the robot in close proximity to the structure. The operator uses their domain knowledge and problem solving skills to guide the robot in difficult to reach locations to inspect and assess the condition of the infrastructure. The operator commands the robot in a local task coordinate frame with limited degrees of freedom (DOF). For instance: up/down, left/right, toward/away with respect to the infrastructure. We therefore avoid problems of global mapping and navigation while providing an intuitive interface to the operator. We describe algorithms for pole detection, robot velocity estimation with respect to the pole, and position estimation in 3D space as well as the control algorithms and overall system architecture. We present initial results of shared autonomy of a quadrotor with respect to a vertical pole and robot performance is evaluated by comparing with motion capture data.
Resumo:
Self-hypnosis was taught to 87 obstetric patients (HYP) and was not taught to 56 other patients (CNTRL), all delivered by the same family physician, in order to determine whether the use of self-hypnosis by low-risk obstetric patients leads to fewer technologic interventions during their deliveries or greater satisfaction of parturients with their delivery experience or both. The outcomes of the deliveries of these two groups were compared, and the HYP group was compared to 352 low-risk patients delivered by other family physicians at the same hospital (WCH). Questionnaires were mailed postpartum to 156 patients, all delivered by the same family physician, to determine satisfaction with delivery using the Labor and Delivery Satisfaction Index (LADSI). The hypnosis group showed a significant reduction in the number of epidurals (11.4% less than CNTRL and 17.9% less than WCH, p < 0.05) and the use of intravenous lines (18.5% less for both, p < 0.05). The number of episiotomies was significantly less in the HYP group compared to WCH (15.9%, p < 0.05) and 11.5% less when compared to CNTRL. The tear rate was not statistically different. Combined use of the intervention triad (epidural–forceps–episiotomy) was less for HYP than for CNTRL (15.8% less) and WCH (10.2% less, p < 0.05). More deliveries were done in the labor room with HYP than CNTRL (21%, p < 0.05). The second stage was shortened by 10 min (HYP vs CNTRL). Overall satisfaction of HYP and CNTRL patients was similar and generally favorable.
Resumo:
China's market-oriented labor market reform has been in place for about one and a half decades. This study uses individual data for 1981 and 1987 to examine the success of the first half of the reform program. Success is evaluated by examining changes in the wage setting structure in the state-owned sector over the reform period. Have the market reforms stimulated worker incentives by increasing the returns to human capital acquisition? Has the wage structure altered to more closely mimic that of a market economy? In 1987, there is evidence of a structural change in the system of wage determination, with slightly increased rates of return to human capital. However, changes in industrial wage differentials appear to play the dominant role. It is argued that this may be due to labor market reforms, in particular the introduction of the profit related bonus scheme.J. Comp. Econom.,December 1997,25(3), pp. 403–421. Australian National University, Canberra, ACT0200, Australia and University of Tasmania, Hobart, Tasmania, Australia, and University of Aberdeen, Old Aberdeen, Scotland AB24 3QY.
Resumo:
This thesis presents novel vision based control solutions that enable fixed-wing Unmanned Aerial Vehicles to perform tasks of inspection over infrastructure including power lines, pipe lines and roads. This is achieved through the development of techniques that combine visual servoing with alternate manoeuvres that assist the UAV in both following and observing the feature from a downward facing camera. Control designs are developed through techniques of Image Based Visual Servoing to utilise sideslip through Skid-to-Turn and Forward-Slip manoeuvres. This allows the UAV to simultaneously track and collect data over the length of infrastructure, including straight segments and the transition where these meet.
Resumo:
In Julstar Pty Ltd v Lynch Morgan Lawyers [2012] QDC 272 Dorney QC DCJ considered whether an applicant for an assessment of all or part of their costs under s 335 of the Legal Profession Act 2007 (Qld) (LPA) must provide grounds on which they dispute the amount of the costs charged or their liability to pay them. His Honour also made an order for inspection of the solicitor’s file, despite a claimed lien for unpaid fees.
Resumo:
Aerial inspection of pipelines, powerlines, and other large linear infrastructure networks has emerged in a number of civilian remote sensing applications. Challenges relate to automating inspection flight for under-actuated aircraft with LiDAR/camera sensor constraints whilst subjected to wind disturbances. This paper presents new improved turn planning strategies with guidance suitable for automation of linear infrastructure inspection able to reduce inspection flight distance by including wind information. Simulation and experimental flight tests confirmed the flight distance saving, and the proposed guidance strategies exhibited good tracking performance in a range of wind conditions.
Resumo:
The low-altitude aircraft inspection of powerlines, or other linear infrastructure networks, is emerging as an important application requiring specialised control technologies. Despite some recent advances in automated control related to this application, control of the underactuated aircraft vertical dynamics has not been completely achieved, especially in the presence of thermal disturbances. Rejection of thermal disturbances represents a key challenge to the control of inspection aircraft due to the underactuated nature of the dynamics and specified speed, altitude, and pitch constraints. This paper proposes a new vertical controller consisting of a backstepping elevator controller with feedforward-feedback throttle controller. The performance of our proposed approach is evaluated against two existing candidate controllers.
Resumo:
Growing up, my family worshipped at the altar of unionism. My parents embraced ‘working class’ as an active social position not as a step on the aspirational treadmill. In those days and in the areas where I lived, it was nothing special. It was a given that everyone was in a union and voted Labor, manning factories and building sites and marching or striking when the need arose...
Resumo:
We present a pole inspection system for outdoor environments comprising a high-speed camera on a vertical take-off and landing (VTOL) aerial platform. The pole inspection task requires a vehicle to fly close to a structure while maintaining a fixed stand-off distance from it. Typical GPS errors make GPS-based navigation unsuitable for this task however. When flying outdoors a vehicle is also affected by aerodynamics disturbances such as wind gusts, so the onboard controller must be robust to these disturbances in order to maintain the stand-off distance. Two problems must therefor be addressed: fast and accurate state estimation without GPS, and the design of a robust controller. We resolve these problems by a) performing visual + inertial relative state estimation and b) using a robust line tracker and a nested controller design. Our state estimation exploits high-speed camera images (100Hz) and 70Hz IMU data fused in an Extended Kalman Filter (EKF). We demonstrate results from outdoor experiments for pole-relative hovering, and pole circumnavigation where the operator provides only yaw commands. Lastly, we show results for image-based 3D reconstruction and texture mapping of a pole to demonstrate the usefulness for inspection tasks.
Resumo:
In Altmann v Ioff of Victoria Friendly Society [2004] QDC 005 McGill DCJ considered the practical question in relation to disclosure of documents as to whether a party disclosing bundles of documents under UCPR r 217 was obliged to number or otherwise individually identify the documents
Semiparametric estimates of the supply and demand effects of disability on labor force participation
Resumo:
This paper modifies and uses the semiparametric methods of Ichimura and Lee (1991) on standard cross-section data to decompose the effect of disability on labor force participation into a demand and a supply effect. It shows that straightforward use of Ichimura and Lee leads to meaningless results while imposing monotonicity on the unknown function leads to substantial results. The paper finds that supply effects dominate the demand effects of disability.
Resumo:
This paper presents a 100 Hz monocular position based visual servoing system to control a quadrotor flying in close proximity to vertical structures approximating a narrow, locally linear shape. Assuming the object boundaries are represented by parallel vertical lines in the image, detection and tracking is achieved using Plücker line representation and a line tracker. The visual information is fused with IMU data in an EKF framework to provide fast and accurate state estimation. A nested control design provides position and velocity control with respect to the object. Our approach is aimed at high performance on-board control for applications allowing only small error margins and without a motion capture system, as required for real world infrastructure inspection. Simulated and ground-truthed experimental results are presented.
Impact of child labor on academic performance : evidence from the program "Edúcame Primero Colombia"
Resumo:
In this study, the effects of different variables of child labor on academic performance are investigated. To this end, 3302 children participating in the child labor eradication program “Edúcame Primero Colombia” were interviewed. The interview format used for the children's enrollment into the program was a template from which socioeconomic conditions, academic performance, and child labor variables were evaluated. The academic performance factor was determined using the Analytic Hierarchy Process (AHP). The data were analyzed through a logistic regression model that took into account children who engaged in a type of labor (n = 921). The results showed that labor conditions, the number of weekly hours dedicated to work, and the presence of work scheduled in the morning negatively affected the academic performance of child laborers. These results show that the relationship between child labor and academic performance is based on the conflict between these two activities. These results do not indicate a linear and simple relationship associated with the recognition of the presence or absence of child labor. This study has implications for the formulation of policies, programs, and interventions for preventing, eradicating, and attenuating the negative effects of child labor on the social and educational development of children.