121 resultados para Knowledge representation (Information theory)
Resumo:
Reasoning with uncertain knowledge and belief has long been recognized as an important research issue in Artificial Intelligence (AI). Several methodologies have been proposed in the past, including knowledge-based systems, fuzzy sets, and probability theory. The probabilistic approach became popular mainly due to a knowledge representation framework called Bayesian networks. Bayesian networks have earned reputation of being powerful tools for modeling complex problem involving uncertain knowledge. Uncertain knowledge exists in domains such as medicine, law, geographical information systems and design as it is difficult to retrieve all knowledge and experience from experts. In design domain, experts believe that design style is an intangible concept and that its knowledge is difficult to be presented in a formal way. The aim of the research is to find ways to represent design style knowledge in Bayesian net works. We showed that these networks can be used for diagnosis (inferences) and classification of design style. The furniture design style is selected as an example domain, however the method can be used for any other domain.
Designing informal learning experiences for early career academics using a knowledge ecosystem model
Resumo:
This article presents a ‘knowledge ecosystem’ model of how early career academics experience using information to learn while building their social networks for developmental purposes. Developed using grounded theory methodology, the model offers a way of conceptualising how to empower early career academics through 1) agency (individual and relational) and 2) facilitation of personalised informal learning (design of physical and virtual systems and environments) in spaces where developmental relationships are formed including programs, courses, events, community, home and social media. It is suggested that the knowledge ecosystem model is suitable for use in designing informal learning experiences for early career academics.
Resumo:
Search engines have forever changed the way people access and discover knowledge, allowing information about almost any subject to be quickly and easily retrieved within seconds. As increasingly more material becomes available electronically the influence of search engines on our lives will continue to grow. This presents the problem of how to find what information is contained in each search engine, what bias a search engine may have, and how to select the best search engine for a particular information need. This research introduces a new method, search engine content analysis, in order to solve the above problem. Search engine content analysis is a new development of traditional information retrieval field called collection selection, which deals with general information repositories. Current research in collection selection relies on full access to the collection or estimations of the size of the collections. Also collection descriptions are often represented as term occurrence statistics. An automatic ontology learning method is developed for the search engine content analysis, which trains an ontology with world knowledge of hundreds of different subjects in a multilevel taxonomy. This ontology is then mined to find important classification rules, and these rules are used to perform an extensive analysis of the content of the largest general purpose Internet search engines in use today. Instead of representing collections as a set of terms, which commonly occurs in collection selection, they are represented as a set of subjects, leading to a more robust representation of information and a decrease of synonymy. The ontology based method was compared with ReDDE (Relevant Document Distribution Estimation method for resource selection) using the standard R-value metric, with encouraging results. ReDDE is the current state of the art collection selection method which relies on collection size estimation. The method was also used to analyse the content of the most popular search engines in use today, including Google and Yahoo. In addition several specialist search engines such as Pubmed and the U.S. Department of Agriculture were analysed. In conclusion, this research shows that the ontology based method mitigates the need for collection size estimation.
Resumo:
Purpose – The purpose of this paper is to provide a practicable systems-based approach to knowledge management (KM) in a project environment, to encourage organisations to unlock the value in their review processes. It relies on knowledge capture and storage at decision review points, to enrich individual, team and organisational learning during the project life cycle. The project's phases are typically represented horizontally with deliverables (objectives) or project "promises" as the desirable outcomes. The purpose of this paper is to give expression through introducing a vertical dimension to facilitate the KM process. A model is proposed that conceptualises project-specific knowledge drawing on and feeding into the organisation's knowledge management system (KMS) at tactical and strategic levels. Design/methodology/approach – This conceptual paper links concepts from systems theory with KM, to produce a model to identify, collate, and optimise project-based knowledge and integrate it into the management process. Findings – The application of the system theory approach enriches the knowledge generated by a project, and feeds it into the next phase of that project. At the same time, it contributes to the individual's and project team's KM, specifies possible courses of action, together with risks, costs and benefits and thus it expands the organisation's higher level KMS. Research limitations/implications – The concept suggests that the knowledge capture, storage and sharing process may best be undertaken holistically, in view of the systems relationships between the tasks. Systems theory structures this process. Research opportunities include studying the interfaces between levels of KM, in relation to the project's progress. Practical implications – Reconceptualisation of the project as a knowledge creation process may improve the project's progress as well as add to the individual's, project team's, and wider organisation's knowledge base. An example is given. Originality/value – This paper illuminates the broader potential of under-utilised opportunities in well-known management approaches to add dimension to the business project, of knowledge creation, storage and sharing.
Resumo:
While extensive literature exists on knowledge-based urban development (KBUD) focusing on large metropolitan cities, there is a paucity of literature looking into similar developments in small regional towns. The major aim of the paper is to examine the nature and potential for building knowledge precincts in regional towns. Through a review of extant literature on knowledge precincts, five key value elements and principles for development are identified. These principles are then tested and applied to a case study of the small town of Cooroy in Noosa, Australia. The Cooroy Lower Mill Site and its surroundings are the designated location for what may be called a community-based creative knowledge precinct. The opportunities and challenges for setting up a creative knowledge precinct in Cooroy were examined. The study showed that there is a potential to develop Cooroy with the provision of cultural and learning facilities, partnerships with government, business and educational institutions, and networking with other creative and knowledge precincts in the region. However, there are also specific challenges relating to the development of a knowledge precinct within the regional town and these relate to critical mass, competition and governance.
Resumo:
Effective knowledge transfer can prevent the reinvention of systems and ideas as well as the repetition of errors. Doing so will save substantial time, as well as contribute to better performance of projects and project-based organisations (PBOs). Despite the importance of knowledge, PBOs face serious barriers to the effective transfer of knowledge, while their characteristics, such as unique and innovative approaches taken during every project, mean they have much to gain from knowledge transfer. As each new project starts, there is the strong potential to reinvent the process, rather than utilise learning from previous projects. In fact, rework is one of the primary factors contributing to construction industry's poor performance and productivity. Current literature has identified several barriers to knowledge transfer in organisational settings in general, and not specifically PBOs. However, PBOs significantly differ from other types of organisations. PBOs operate mainly on temporary projects, where time is a crucial factor and people are more mobile than in other organisational settings. The aim of this research is to identify the key barriers that prevent effective knowledge transfer for PBOs, exclusively. Interviews with project managers and senior managers of PBOs complement the analysis of the literature and provide professional expertise. This research is crucial to gaining a better understanding of obstacles that hinder knowledge transfer in projects. The main contribution of this research is exclusive for PBO, list of key barriers that organisation and project managers need to consider to ensure effective knowledge transfer and better project management.
Resumo:
We argue that web service discovery technology should help the user navigate a complex problem space by providing suggestions for services which they may not be able to formulate themselves as (s)he lacks the epistemic resources to do so. Free text documents in service environments provide an untapped source of information for augmenting the epistemic state of the user and hence their ability to search effectively for services. A quantitative approach to semantic knowledge representation is adopted in the form of semantic space models computed from these free text documents. Knowledge of the user’s agenda is promoted by associational inferences computed from the semantic space. The inferences are suggestive and aim to promote human abductive reasoning to guide the user from fuzzy search goals into a better understanding of the problem space surrounding the given agenda. Experimental results are discussed based on a complex and realistic planning activity.
Resumo:
Artificial neural networks (ANN) have demonstrated good predictive performance in a wide range of applications. They are, however, not considered sufficient for knowledge representation because of their inability to represent the reasoning process succinctly. This paper proposes a novel methodology Gyan that represents the knowledge of a trained network in the form of restricted first-order predicate rules. The empirical results demonstrate that an equivalent symbolic interpretation in the form of rules with predicates, terms and variables can be derived describing the overall behaviour of the trained ANN with improved comprehensibility while maintaining the accuracy and fidelity of the propositional rules.
Resumo:
Ideas of 'how we learn' in formal academic settings have changed markedly in recent decades. The primary position that universities once held on shaping what constitutes learning has come into question from a range of experience-led and situated learning models. Drawing on findings from a study conducted across three Australian universities, the article focuses on the multifarious learning experiences indicative of practice-based learning exchanges such as student placements. Building on both experiential and situated learning theories, the authors found that students can experience transformative and emotional elucidations of learning, that can challenge tacit assumptions and transform the ways they understand the world. It was found that all participants (hosts, students, academics) both teach and learn in these educative scenarios and that, contrary to common (mis)perceptions that academics live in 'ivory towers', they play a crucial role in contributing to learning that takes place in the so-called 'real world'.
Resumo:
As more and more information is available on the Web finding quality and reliable information is becoming harder. To help solve this problem, Web search models need to incorporate users’ cognitive styles. This paper reports the preliminary results from a user study exploring the relationships between Web users’ searching behavior and their cognitive style. The data was collected using a questionnaire, Web search logs and think-aloud strategy. The preliminary findings reveal a number of cognitive factors, such as information searching processes, results evaluations and cognitive style, having an influence on users’ Web searching behavior. Among these factors, the cognitive style of the user was observed to have a greater impact. Based on the key findings, a conceptual model of Web searching and cognitive styles is presented.
Resumo:
This article introduces a “pseudo classical” notion of modelling non-separability. This form of non-separability can be viewed as lying between separability and quantum-like non-separability. Non-separability is formalized in terms of the non-factorizabilty of the underlying joint probability distribution. A decision criterium for determining the non-factorizability of the joint distribution is related to determining the rank of a matrix as well as another approach based on the chi-square-goodness-of-fit test. This pseudo-classical notion of non-separability is discussed in terms of quantum games and concept combinations in human cognition.
Three primary school students’ cognition about 3D rotation in a virtual reality learning environment
Resumo:
This paper reports on three primary school students’ explorations of 3D rotation in a virtual reality learning environment (VRLE) named VRMath. When asked to investigate if you would face the same direction when you turn right 45 degrees first then roll up 45 degrees, or when you roll up 45 degrees first then turn right 45 degrees, the students found that the different order of the two turns ended up with different directions in the VRLE. This was contrary to the students’ prior predictions based on using pen, paper and body movements. The findings of this study showed the difficulty young children have in perceiving and understanding the non-commutative nature of 3D rotation and the power of the computational VRLE in giving students experiences that they rarely have in real life with 3D manipulations and 3D mental movements.