248 resultados para Ideal-gas


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pure and Iron incorporated nanostructured Tungsten Oxide (WO3) thin films were investigated for gas sensing applications using noise spectroscopy. The WO3 sensor was able to detect lower concentrations (1 ppm-10 ppm) of NH3, CO, CH4 and Acetaldehyde gases at operating temperatures between 100 degrees celcius to 250 degrees celcius. The iron doped Tungsten Oxide sensor (WO3:Fe) showed some response to Acetaldehyde gas at relatively higher operating temperature (250 degrees celcius) and gas concentration of 10 ppm. The sensitivity of the WO3 sensor towards NH3, CH4 and Acetaldehyde at lower operating temperatures (50 degrees celcius - 100 degrees celcius) was significant when the sensor was photo-activated using blue-light emitting diode (Blue-LED). From the results, photo-activated WO3 thin film that operates at room temperature appeared to be a promising gas sensor. The overall results indicated that the WO3 sensor exhibited reproducibility for the detection of various gases and the WO3:Fe indicated some response towards Acetaldehyde gas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Greenhouse gas markets, where invisible gases are traded, must seem like black boxes to most people. Farmers can make money on these markets, such as the Chicago Climate Exchange, by installing methane capture technologies in animal-based systems, no-till farming, establishing grasslands, and planting trees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agriculture's contribution to radiative forcing is principally through its historical release of carbon in soil and vegetation to the atmosphere and through its contemporary release of nitrous oxide (N2O) and methane (CHM4). The sequestration of soil carbon in soils now depleted in soil organic matter is a well-known strategy for mitigating the buildup of CO2 in the atmosphere. Less well-recognized are other mitigation potentials. A full-cost accounting of the effects of agriculture on greenhouse gas emissions is necessary to quantify the relative importance of all mitigation options. Such an analysis shows nitrogen fertilizer, agricultural liming, fuel use, N2O emissions, and CH4 fluxes to have additional significant potential for mitigation. By evaluating all sources in terms of their global warming potential it becomes possible to directly evaluate greenhouse policy options for agriculture. A comparison of temperate and tropical systems illustrates some of these options.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Australian climate, soils and agricultural management practices are significantly different from those of the northern hemisphere nations. Consequently, experimental data on greenhouse gas production from European and North American agricultural soils and its interpretation are unlikely to be directly applicable to Australian systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Groundwater from Maramarua has been identified as coal seam gas (CSG) water by studying its composition, and comparing it against the geochemical signature from other CSG basins. CSG is natural gas that has been produced through thermogenic and biogenic processes in underground coal seams; CSG extraction requires the abstraction of significant amounts of CSG water. To date, no international literature has described coal seam gas water in New Zealand, however recent CSG exploration work has resulted in CSG water quality data from a coal seam in Maramarua, New Zealand. Water quality from this site closely follows the geochemical signature associated with United States CSG waters, and this has helped to characterise the type of water being abstracted. CSG water from this part of Maramarua has low calcium, magnesium, and sulphate concentrations but high sodium (334 mg/l), chloride (146 mg/l) and bicarbonate (435 mg/l) concentrations. In addition, this water has high pH (7.8) and alkalinity (360 mg/l as CaCO3), which is a direct consequence of carbonate dissolution and biogenic processes. Different analyte ratios ('source-rock deduction' method) have helped to identify the different formation processes responsible in shaping Maramarua CSG water

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coal seam gas (CSG) exploration and development requires the abstraction of significant amounts of water. This is so because gas desorbtion in coal seams takes place only after aquifer pressure has been reduced by prolonged pumping of aquifer water. CSG waters have a specific geochemical signature which is a product of their formation process. These waters have high bicarbonate, high sodium, low calcium, low magnesium, and very low sulphate concentrations. Additionally, chloride concentrations may be high depending on the coal depositional environment. This particular signature is not only useful for exploration purposes, but it also highlights potential environmental issues that can arise as a consequence of CSG water disposal. Since 2002 L&M Coal Seam Gas Ltd and CRL Energy Ltd, have been involved in exploration and development of CSG in New Zealand. Anticipating disposal of CSG waters as a key issue in CSG development, they have been assessing CSG water quality along with exploration work. Coal seam gas water samples from an exploration well in Maramarua closely follow the geochemical signature associated with CSG waters. This has helped to identify CSG potential, while at the same time assessing the chemical characteristics and water generation processes in the aquifer. Neutral pH and high alkalinity suggest that these waters could be easily managed once the sodium and chloride concentrations are reduced to acceptable levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because of the greenhouse gas emissions implications of the market dominating electric hot water systems, governments in Australia have implemented policies and programs to encourage the uptake of solar water heaters (SWHs) in the residential market as part of climate change adaptation and mitigation strategies. The cost-benefit analysis that usually accompanies all government policy and program design could be simplistically reduced to the ratio of expected greenhouse gas reductions of SWH to the cost of a SWH. The national Register of Solar Water Heaters specifies how many renewable energy certificates (RECs) are allocated to complying SWHs according to their expected performance, and hence greenhouse gas reductions, in different climates. Neither REC allocations nor rebates are tied to actual performance of systems. This paper examines the performance of instantaneous gas-boosted solar water heaters installed in new residences in a housing estate in south-east Queensland in the period 2007 – 2010. The evidence indicates systemic failures in installation practices, resulting in zero solar performance or dramatic underperformance (estimated average 43% solar contribution). The paper will detail the faults identified, and how these faults were eventually diagnosed and corrected. The impacts of these system failures on end-use consumers are discussed before concluding with a brief overview of areas where further research is required in order to more fully understand whole of supply chain implications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compressed natural gas (CNG) engines are thought to be less harmful to the environment than conventional diesel engines, especially in terms of particle emissions. Although, this is true with respect to particulate matter (PM) emissions, results of particle number (PN) emission comparisons have been inconclusive. In this study, results of on-road and dynamometer studies of buses were used to derive several important conclusions. We show that, although PN emissions from CNG buses are significantly lower than from diesel buses at low engine power, they become comparable at high power. For diesel buses, PN emissions are not significantly different between acceleration and operation at steady maximum power. However, the corresponding PN emissions from CNG buses when accelerating are an order of magnitude greater than when operating at steady maximum power. During acceleration under heavy load, PN emissions from CNG buses are an order of magnitude higher than from diesel buses. The particles emitted from CNG buses are too small to contribute to PM10 emissions or contribute to a reduction of visibility, and may consist of semivolatile nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motor vehicle emission factors are generally derived from driving tests mimicking steady state conditions or transient drive cycles. However, neither of these test conditions completely represents real world driving conditions. In particular, they fail to determine emissions generated during the accelerating phase – a condition in which urban buses spend much of their time. In this study we analyse and compare the results of time-dependant emission measurements conducted on diesel and compressed natural gas (CNG) buses during an urban driving cycle on a chassis dynamometer and we derive power-law expressions relating carbon dioxide (CO2) emission factors to the instantaneous speed while accelerating from rest. Emissions during acceleration are compared with that during steady speed operation. These results have important implications for emission modelling particularly under congested traffic conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, two ideal formation models of serrated chips, the symmetric formation model and the unilateral right-angle formation model, have been established for the first time. Based on the ideal models and related adiabatic shear theory of serrated chip formation, the theoretical relationship among average tooth pitch, average tooth height and chip thickness are obtained. Further, the theoretical relation of the passivation coefficient of chip's sawtooth and the chip thickness compression ratio is deduced as well. The comparison between these theoretical prediction curves and experimental data shows good agreement, which well validates the robustness of the ideal chip formation models and the correctness of the theoretical deducing analysis. The proposed ideal models may have provided a simple but effective theoretical basis for succeeding research on serrated chip morphology. Finally, the influences of most principal cutting factors on serrated chip formation are discussed on the basis of a series of finite element simulation results for practical advices of controlling serrated chips in engineering application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research has established a close relationship between learning environments and learning outcomes (Department of Education and Early Childhood Development, Victoria, 2008; Woolner, Hall, Higgins, McCaughey & Wall, 2007) yet little is known about how students in Australian schools imagine the ways that their learning environments could be improved to enhance their engagement with the processes and content of education and children are rarely consulted on the issue of school design (Rudduck & Flutter, 2004). Currently, school and classroom designers give attention to operational matters of efficiency and economy, so that architecture for children’s education is largely conceived in terms of adult and professional needs (Halpin, 2007). This results in the construction of educational spaces that impose traditional teaching and learning methods, reducing the possibilities of imaginative pedagogical relationships. Education authorities may encourage new, student-centred pedagogical styles, such as collaborative learning, team-teaching and peer tutoring, but the spaces where such innovations are occurring do not always provide the features necessary to implement these styles. Heeding the views of children could result in the creation of spaces where more imaginative pedagogical relationships and student-centred pedagogical styles can be implemented. In this article, a research project conducted with children in nine Queensland primary schools to investigate their ideas of the ideal ‘school’ is discussed. Overwhelmingly, the students’ work emphasised that learning should be fun and that learning environments should be eco-friendly places where their imaginations can be engaged and where they learn from and in touch with reality. The children’s imagined schools echo ideas that have been promoted over many decades by progressive educators such as John Dewey (1897, in Provenzo, 2006) (“experiential learning”), AS Neill (in Cassebaum, 2003) (Summerhill school) and Ivan Illich (1970) (“deschooling”), with a vast majority of students suggesting that, wherever possible, learning should take place away from classrooms and in environments that support direct, hands-on learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanowires of different metal oxides (SnO2, ZnO) have been grown by evaporation-condensation process. Their chemical composition has been investigated by using XPS. The standard XPS quantification through main photoelectron peaks, modified Auger parameter and valence band spectra were examined for the accurate determination of oxidation state of metals in the nanowires. Morphological investigation has been conducted by acquiring and analyzing the SEM images. For the simulation of working conditions of sensor, the samples were annealed in ultra high vacuum (UHV) up to 500°C and XPS analysis repeated after this treatment. Finally, the nanowires of SnO 2 have were used to produce a novel gas sensor based on Pt/oxide/SiC structure and operating as Schottky diode. Copyright © 2008 John Wiley & Sons, Ltd.