15 resultados para Ideal-gas
em CaltechTHESIS
Resumo:
This thesis presents an experimental investigation of the axisymmetric heat transfer from a small scale fire and resulting buoyant plume to a horizontal, unobstructed ceiling during the initial stages of development. A propane-air burner yielding a heat source strength between 1.0 kW and 1.6 kW was used to simulate the fire, and measurements proved that this heat source did satisfactorily represent a source of buoyancy only. The ceiling consisted of a 1/16" steel plate of 0.91 m. diameter, insulated on the upper side. The ceiling height was adjustable between 0.5 m and 0.91 m. Temperature measurements were carried out in the plume, ceiling jet, and on the ceiling.
Heat transfer data were obtained by using the transient method and applying corrections for the radial conduction along the ceiling and losses through the insulation material. The ceiling heat transfer coefficient was based on the adiabatic ceiling jet temperature (recovery temperature) reached after a long time. A parameter involving the source strength Q and ceiling height H was found to correlate measurements of this temperature and its radial variation. A similar parameter for estimating the ceiling heat transfer coefficient was confirmed by the experimental results.
This investigation therefore provides reasonable estimates for the heat transfer from a buoyant gas plume to a ceiling in the axisymmetric case, for the stagnation region where such heat transfer is a maximum and for the ceiling jet region (r/H ≤ 0.7). A comparison with data from experiments which involved larger heat sources indicates that the predicted scaling of temperatures and heat transfer rates for larger scale fires is adequate.
Resumo:
Part I
Studies of vibrational relaxation in excited electronic states of simple diatomic molecules trapped in solid rare-gas matrices at low temperatures are reported. The relaxation is investigated by monitoring the emission intensity from vibrational levels of the excited electronic state to vibrational levels of the ground electronic state. The emission was in all cases excited by bombardment of the doped rare-gas solid with X-rays.
The diatomics studied and the band systems seen are: N2, Vegard-Kaplan and Second Positive systems; O2, Herzberg system; OH and OD, A 2Σ+ - X2IIi system. The latter has been investigated only in solid Ne, where both emission and absorption spectra were recorded; observed fine structure has been partly interpreted in terms of slightly perturbed rotational motion in the solid. For N2, OH, and OD emission occurred from v' > 0, establishing a vibrational relaxation time in the excited electronic state of the order, of longer than, the electronic radiative lifetime. The relative emission intensity and decay times for different v' progressions in the Vegard-Kaplan system are found to depend on the rare-gas host and the N2 concentration, but are independent of temperature in the range 1.7°K to 30°K.
Part II
Static crystal field effects on the absorption, fluorescence, and phosphorescence spectra of isotopically mixed benzene crystals were investigated. Evidence is presented which demonstrate that in the crystal the ground, lowest excited singlet, and lowest triplet states of the guest deviate from hexagonal symmetry. The deviation appears largest in the lowest triplet state and may be due to an intrinsic instability of the 3B1u state. High resolution absorption and phospho- rescence spectra are reported and analyzed in terms of site-splitting of degenerate vibrations and orientational effects. The guest phosphorescence lifetime for various benzene isotopes in C6D6 and sym-C6H3D3 hosts is presented and discussed.
Resumo:
Spectroscopic investigations of hydrogen-bonding and van der Waals' interactions m molecular clusters were studied by the techniques of infrared predissociation and resonance-enhanced multiphoton ionization spectroscopies (REMPI). Ab initio calculations were applied in conjunction for data interpretation.
The infrared predissociation spectroscopy of CN^-•(H_2O)_n (n = 2 - 6) clusters was reported in the region of 2950 - 3850 cm^(-1). The hydrogen bondings for the C-site and N-site binding, and among the water molecules were identified for n = 2 to 4. A spectral transition was observed for n = 5 and 6, implying that the anion was surface-bound onto the water aggregates in larger clusters.
The infrared predissociation spectroscopy of Br^-•(NH_3) and I^-•(NH_3)_n (n =1-3) clusters was reported in the region of 3050-3450 cm^(-1). For the Br^-•(NH_3) complex, a dominating ionic NH stretch appeared at 3175 cm^(-1), and the weaker free NH stretch appeared at 3348 cm^(-1). The observed spectrum was consistent to the structure in which there was one nearly linear hydrogen bond between Br^- and the NH_3 moiety. For the I^- •(NH_3) complex, five distinct IR absorption bands were observed in the spectrum. The spectrum was not consistent with basic frequency patterns of three geometries considered in the ab initio calculations - complex with one, two and three hydrogen bondings between I^- and the NH_3 moiety. Substantial inhomogenous broadening were displayed in the spectra for I^-•(NH_3)_n (n =2-3), suggesting the presence of multiple isomers.
The REMPI spectroscopy of the bound 4p ^2П 1/2 and ^2П 3/2 states, and the dissociative 3d ^2Σ^+ 1/2 state in the Al•Ar complex was reported. The dissociative spectrum at Al^+ channel suggested the coupling of the 4p ^2П 1/2,3/2 states to the repulsive 3d ^2Σ^+ 1/2 state. The spin-electronic coupling was further manifested in the dissociative Al^+ spectrum of the 3d ^2Σ^+ 1/2 state. Using the potential energy curves obtained from ab initio calculations, a bound → continuum Franck-Condon-intensity simulation was performed and compared with the one-photon 3d ^2Σ^+ 1/2 profile. The agreement provided evidence for the petturbation above the Al(3d)Ar dissociation limit, and the repulsive character of the 3d ^2Σ^+ 1/2 state.
Resumo:
This thesis describes the use of multiply-substituted stable isotopologues of carbonate minerals and methane gas to better understand how these environmentally significant minerals and gases form and are modified throughout their geological histories. Stable isotopes have a long tradition in earth science as a tool for providing quantitative constraints on how molecules, in or on the earth, formed in both the present and past. Nearly all studies, until recently, have only measured the bulk concentrations of stable isotopes in a phase or species. However, the abundance of various isotopologues within a phase, for example the concentration of isotopologues with multiple rare isotopes (multiply substituted or 'clumped' isotopologues) also carries potentially useful information. Specifically, the abundances of clumped isotopologues in an equilibrated system are a function of temperature and thus knowledge of their abundances can be used to calculate a sample’s formation temperature. In this thesis, measurements of clumped isotopologues are made on both carbonate-bearing minerals and methane gas in order to better constrain the environmental and geological histories of various samples.
Clumped-isotope-based measurements of ancient carbonate-bearing minerals, including apatites, have opened up paleotemperature reconstructions to a variety of systems and time periods. However, a critical issue when using clumped-isotope based measurements to reconstruct ancient mineral formation temperatures is whether the samples being measured have faithfully recorded their original internal isotopic distributions. These original distributions can be altered, for example, by diffusion of atoms in the mineral lattice or through diagenetic reactions. Understanding these processes quantitatively is critical for the use of clumped isotopes to reconstruct past temperatures, quantify diagenesis, and calculate time-temperature burial histories of carbonate minerals. In order to help orient this part of the thesis, Chapter 2 provides a broad overview and history of clumped-isotope based measurements in carbonate minerals.
In Chapter 3, the effects of elevated temperatures on a sample’s clumped-isotope composition are probed in both natural and experimental apatites (which contain structural carbonate groups) and calcites. A quantitative model is created that is calibrated by the experiments and consistent with the natural samples. The model allows for calculations of the change in a sample’s clumped isotope abundances as a function of any time-temperature history.
In Chapter 4, the effects of diagenesis on the stable isotopic compositions of apatites are explored on samples from a variety of sedimentary phosphorite deposits. Clumped isotope temperatures and bulk isotopic measurements from carbonate and phosphate groups are compared for all samples. These results demonstrate that samples have experienced isotopic exchange of oxygen atoms in both the carbonate and phosphate groups. A kinetic model is developed that allows for the calculation of the amount of diagenesis each sample has experienced and yields insight into the physical and chemical processes of diagenesis.
The thesis then switches gear and turns its attention to clumped isotope measurements of methane. Methane is critical greenhouse gas, energy resource, and microbial metabolic product and substrate. Despite its importance both environmentally and economically, much about methane’s formational mechanisms and the relative sources of methane to various environments remains poorly constrained. In order to add new constraints to our understanding of the formation of methane in nature, I describe the development and application of methane clumped isotope measurements to environmental deposits of methane. To help orient the reader, a brief overview of the formation of methane in both high and low temperature settings is given in Chapter 5.
In Chapter 6, a method for the measurement of methane clumped isotopologues via mass spectrometry is described. This chapter demonstrates that the measurement is precise and accurate. Additionally, the measurement is calibrated experimentally such that measurements of methane clumped isotope abundances can be converted into equivalent formational temperatures. This study represents the first time that methane clumped isotope abundances have been measured at useful precisions.
In Chapter 7, the methane clumped isotope method is applied to natural samples from a variety of settings. These settings include thermogenic gases formed and reservoired in shales, migrated thermogenic gases, biogenic gases, mixed biogenic and thermogenic gas deposits, and experimentally generated gases. In all cases, calculated clumped isotope temperatures make geological sense as formation temperatures or mixtures of high and low temperature gases. Based on these observations, we propose that the clumped isotope temperature of an unmixed gas represents its formation temperature — this was neither an obvious nor expected result and has important implications for how methane forms in nature. Additionally, these results demonstrate that methane-clumped isotope compositions provided valuable additional constraints to studying natural methane deposits.
Resumo:
The laminar to turbulent transition process in boundary layer flows in thermochemical nonequilibrium at high enthalpy is measured and characterized. Experiments are performed in the T5 Hypervelocity Reflected Shock Tunnel at Caltech, using a 1 m length 5-degree half angle axisymmetric cone instrumented with 80 fast-response annular thermocouples, complemented by boundary layer stability computations using the STABL software suite. A new mixing tank is added to the shock tube fill apparatus for premixed freestream gas experiments, and a new cleaning procedure results in more consistent transition measurements. Transition location is nondimensionalized using a scaling with the boundary layer thickness, which is correlated with the acoustic properties of the boundary layer, and compared with parabolized stability equation (PSE) analysis. In these nondimensionalized terms, transition delay with increasing CO2 concentration is observed: tests in 100% and 50% CO2, by mass, transition up to 25% and 15% later, respectively, than air experiments. These results are consistent with previous work indicating that CO2 molecules at elevated temperatures absorb acoustic instabilities in the MHz range, which is the expected frequency of the Mack second-mode instability at these conditions, and also consistent with predictions from PSE analysis. A strong unit Reynolds number effect is observed, which is believed to arise from tunnel noise. NTr for air from 5.4 to 13.2 is computed, substantially higher than previously reported for noisy facilities. Time- and spatially-resolved heat transfer traces are used to track the propagation of turbulent spots, and convection rates at 90%, 76%, and 63% of the boundary layer edge velocity, respectively, are observed for the leading edge, centroid, and trailing edge of the spots. A model constructed with these spot propagation parameters is used to infer spot generation rates from measured transition onset to completion distance. Finally, a novel method to control transition location with boundary layer gas injection is investigated. An appropriate porous-metal injector section for the cone is designed and fabricated, and the efficacy of injected CO2 for delaying transition is gauged at various mass flow rates, and compared with both no injection and chemically inert argon injection cases. While CO2 injection seems to delay transition, and argon injection seems to promote it, the experimental results are inconclusive and matching computations do not predict a reduction in N factor from any CO2 injection condition computed.
Resumo:
This is a two-part thesis concerning the motion of a test particle in a bath. In part one we use an expansion of the operator PLeit(1-P)LLP to shape the Zwanzig equation into a generalized Fokker-Planck equation which involves a diffusion tensor depending on the test particle's momentum and the time.
In part two the resultant equation is studied in some detail for the case of test particle motion in a weakly coupled Lorentz Gas. The diffusion tensor for this system is considered. Some of its properties are calculated; it is computed explicitly for the case of a Gaussian potential of interaction.
The equation for the test particle distribution function can be put into the form of an inhomogeneous Schroedinger equation. The term corresponding to the potential energy in the Schroedinger equation is considered. Its structure is studied, and some of its simplest features are used to find the Green's function in the limiting situations of low density and long time.
Resumo:
Understanding the origin of life on Earth has long fascinated the minds of the global community, and has been a driving factor in interdisciplinary research for centuries. Beyond the pioneering work of Darwin, perhaps the most widely known study in the last century is that of Miller and Urey, who examined the possibility of the formation of prebiotic chemical precursors on the primordial Earth [1]. More recent studies have shown that amino acids, the chemical building blocks of the biopolymers that comprise life as we know it on Earth, are present in meteoritic samples, and that the molecules extracted from the meteorites display isotopic signatures indicative of an extraterrestrial origin [2]. The most recent major discovery in this area has been the detection of glycine (NH2CH2COOH), the simplest amino acid, in pristine cometary samples returned by the NASA STARDUST mission [3]. Indeed, the open questions left by these discoveries, both in the public and scientific communities, hold such fascination that NASA has designated the understanding of our "Cosmic Origins" as a key mission priority.
Despite these exciting discoveries, our understanding of the chemical and physical pathways to the formation of prebiotic molecules is woefully incomplete. This is largely because we do not yet fully understand how the interplay between grain-surface and sub-surface ice reactions and the gas-phase affects astrophysical chemical evolution, and our knowledge of chemical inventories in these regions is incomplete. The research presented here aims to directly address both these issues, so that future work to understand the formation of prebiotic molecules has a solid foundation from which to work.
From an observational standpoint, a dedicated campaign to identify hydroxylamine (NH2OH), potentially a direct precursor to glycine, in the gas-phase was undertaken. No trace of NH2OH was found. These observations motivated a refinement of the chemical models of glycine formation, and have largely ruled out a gas-phase route to the synthesis of the simplest amino acid in the ISM. A molecular mystery in the case of the carrier of a series of transitions was resolved using observational data toward a large number of sources, confirming the identity of this important carbon-chemistry intermediate B11244 as l-C3H+ and identifying it in at least two new environments. Finally, the doubly-nitrogenated molecule carbodiimide HNCNH was identified in the ISM for the first time through maser emission features in the centimeter-wavelength regime.
In the laboratory, a TeraHertz Time-Domain Spectrometer was constructed to obtain the experimental spectra necessary to search for solid-phase species in the ISM in the THz region of the spectrum. These investigations have shown a striking dependence on large-scale, long-range (i.e. lattice) structure of the ices on the spectra they present in the THz. A database of molecular spectra has been started, and both the simplest and most abundant ice species, which have already been identified, as well as a number of more complex species, have been studied. The exquisite sensitivity of the THz spectra to both the structure and thermal history of these ices may lead to better probes of complex chemical and dynamical evolution in interstellar environments.
Resumo:
An attempt is made to provide a theoretical explanation of the effect of the positive column on the voltage-current characteristic of a glow or an arc discharge. Such theories have been developed before, and all are based on balancing the production and loss of charged particles and accounting for the energy supplied to the plasma by the applied electric field. Differences among the theories arise from the approximations and omissions made in selecting processes that affect the particle and energy balances. This work is primarily concerned with the deviation from the ambipolar description of the positive column caused by space charge, electron-ion volume recombination, and temperature inhomogeneities.
The presentation is divided into three parts, the first of which involved the derivation of the final macroscopic equations from kinetic theory. The final equations are obtained by taking the first three moments of the Boltzmann equation for each of the three species in the plasma. Although the method used and the equations obtained are not novel, the derivation is carried out in detail in order to appraise the validity of numerous approximations and to justify the use of data from other sources. The equations are applied to a molecular hydrogen discharge contained between parallel walls. The applied electric field is parallel to the walls, and the dependent variables—electron and ion flux to the walls, electron and ion densities, transverse electric field, and gas temperature—vary only in the direction perpendicular to the walls. The mathematical description is given by a sixth-order nonlinear two-point boundary value problem which contains the applied field as a parameter. The amount of neutral gas and its temperature at the walls are held fixed, and the relation between the applied field and the electron density at the center of the discharge is obtained in the process of solving the problem. This relation corresponds to that between current and voltage and is used to interpret the effect of space charge, recombination, and temperature inhomogeneities on the voltage-current characteristic of the discharge.
The complete solution of the equations is impractical both numerically and analytically, and in Part II the gas temperature is assumed uniform so as to focus on the combined effects of space charge and recombination. The terms representing these effects are treated as perturbations to equations that would otherwise describe the ambipolar situation. However, the term representing space charge is not negligible in a thin boundary layer or sheath near the walls, and consequently the perturbation problem is singular. Separate solutions must be obtained in the sheath and in the main region of the discharge, and the relation between the electron density and the applied field is not determined until these solutions are matched.
In Part III the electron and ion densities are assumed equal, and the complicated space-charge calculation is thereby replaced by the ambipolar description. Recombination and temperature inhomogeneities are both important at high values of the electron density. However, the formulation of the problem permits a comparison of the relative effects, and temperature inhomogeneities are shown to be important at lower values of the electron density than recombination. The equations are solved by a direct numerical integration and by treating the term representing temperature inhomogeneities as a perturbation.
The conclusions reached in the study are primarily concerned with the association of the relation between electron density and axial field with the voltage-current characteristic. It is known that the effect of space charge can account for the subnormal glow discharge and that the normal glow corresponds to a close approach to an ambipolar situation. The effect of temperature inhomogeneities helps explain the decreasing characteristic of the arc, and the effect of recombination is not expected to appear except at very high electron densities.
Resumo:
Theoretical and experimental studies of a gas laser amplifier are presented, assuming the amplifier is operating with a saturating optical frequency signal. The analysis is primarily concerned with the effects of the gas pressure and the presence of an axial magnetic field on the characteristics of the amplifying medium. Semiclassical radiation theory is used, along with a density matrix description of the atomic medium which relates the motion of single atoms to the macroscopic observables. A two-level description of the atom, using phenomenological source rates and decay rates, forms the basis of our analysis of the gas laser medium. Pressure effects are taken into account to a large extent through suitable choices of decay rate parameters.
Two methods for calculating the induced polarization of the atomic medium are used. The first method utilizes a perturbation expansion which is valid for signal intensities which barely reach saturation strength, and it is quite general in applicability. The second method is valid for arbitrarily strong signals, but it yields tractable solutions only for zero magnetic field or for axial magnetic fields large enough such that the Zeeman splitting is much larger than the power broadened homogeneous linewidth of the laser transition. The effects of pressure broadening of the homogeneous spectral linewidth are included in both the weak-signal and strong-signal theories; however the effects of Zeeman sublevel-mixing collisions are taken into account only in the weak-signal theory.
The behavior of a He-Ne gas laser amplifier in the presence of an axial magnetic field has been studied experimentally by measuring gain and Faraday rotation of linearly polarized resonant laser signals for various values of input signal intensity, and by measuring nonlinearity - induced anisotropy for elliptically polarized resonant laser signals of various input intensities. Two high-gain transitions in the 3.39-μ region were used for study: a J = 1 to J = 2 (3s2 → 3p4) transition and a J = 1 to J = 1 (3s2 → 3p2) transition. The input signals were tuned to the centers of their respective resonant gain lines.
The experimental results agree quite well with corresponding theoretical expressions which have been developed to include the nonlinear effects of saturation strength signals. The experimental results clearly show saturation of Faraday rotation, and for the J = 1 t o J = 1 transition a Faraday rotation reversal and a traveling wave gain dip are seen for small values of axial magnetic field. The nonlinearity induced anisotropy shows a marked dependence on the gas pressure in the amplifier tube for the J = 1 to J = 2 transition; this dependence agrees with the predictions of the general perturbational or weak signal theory when allowances are made for the effects of Zeeman sublevel-mixing collisions. The results provide a method for measuring the upper (neon 3s2) level quadrupole moment decay rate, the dipole moment decay rates for the 3s2 → 3p4 and 3s2 → 3p2 transitions, and the effects of various types of collision processes on these decay rates.
Resumo:
This thesis is a study of nonlinear phenomena in the propagation of electromagnetic waves in a weakly ionized gas externally biased with a magnetostatic field. The present study is restricted to the nonlinear phenomena rising from the interaction of electromagnetic waves in the ionized gas. The important effects of nonlinearity are wave-form distortion leads to cross modulation of one wave by a second amplitude-modulated wave.
The nonlinear effects are assumed to be small so that a perturbation method can be used. Boltzmann’s kinetic equation with an appropriate expression for the collision term is solved by expanding the electron distribution function into spherical harmonics in velocity space. In turn, the electron convection current density and the conductivity tensors of the nonlinear ionized gas are found from the distribution function. Finally, the expression for the current density and Maxwell’s equations are employed to investigate the effects of nonlinearity on the propagation of electromagnetic waves in the ionized gas, and also on the reflection of waves from an ionized gas of semi-infinite extent.
Resumo:
This report presents the results of an investigation of a method of underwater propulsion. The propelling system utilizes the energy of a small mass of expanding gas to accelerate the flow of a large mass of water through an open ended duct of proper shape and dimensions to obtain a resultant thrust. The investigation was limited to making a large number of runs on a hydroduct of arbitrary design, varying between wide limits the water flow and gas flow through the device, and measuring the net thrust caused by the introduction and expansion of the gas.
In comparison with the effective exhaust velocity of about 6,000 feet per second observed in rocket motors, this hydroduct model attained a maximum effective exhaust velocity of more than 27,000 feet per second, using nitrogen gas. Using hydrogen gas, effective exhaust velocities of 146,000 feet per second were obtained. Further investigation should prove this method of propulsion not only to be practical but very efficient.
This investigation was conducted at Project No. 1, Guggenheim Aeronautical Laboratory, California Institute of Technology, Pasadena, California.
Resumo:
The equations of motion for the flow of a mixture of liquid droplets, their vapor, and an inert gas through a normal shock wave are derived. A set of equations is obtained which is solved numerically for the equilibrium conditions far downstream of the shock. The equations describing the process of reaching equilibrium are also obtained. This is a set of first-order nonlinear differential equations and must also be solved numerically. The detailed equilibration process is obtained for several cases and the results are discussed.
Resumo:
I. The attenuation of sound due to particles suspended in a gas was first calculated by Sewell and later by Epstein in their classical works on the propagation of sound in a two-phase medium. In their work, and in more recent works which include calculations of sound dispersion, the calculations were made for systems in which there was no mass transfer between the two phases. In the present work, mass transfer between phases is included in the calculations.
The attenuation and dispersion of sound in a two-phase condensing medium are calculated as functions of frequency. The medium in which the sound propagates consists of a gaseous phase, a mixture of inert gas and condensable vapor, which contains condensable liquid droplets. The droplets, which interact with the gaseous phase through the interchange of momentum, energy, and mass (through evaporation and condensation), are treated from the continuum viewpoint. Limiting cases, for flow either frozen or in equilibrium with respect to the various exchange processes, help demonstrate the effects of mass transfer between phases. Included in the calculation is the effect of thermal relaxation within droplets. Pressure relaxation between the two phases is examined, but is not included as a contributing factor because it is of interest only at much higher frequencies than the other relaxation processes. The results for a system typical of sodium droplets in sodium vapor are compared to calculations in which there is no mass exchange between phases. It is found that the maximum attenuation is about 25 per cent greater and occurs at about one-half the frequency for the case which includes mass transfer, and that the dispersion at low frequencies is about 35 per cent greater. Results for different values of latent heat are compared.
II. In the flow of a gas-particle mixture through a nozzle, a normal shock may exist in the diverging section of the nozzle. In Marble’s calculation for a shock in a constant area duct, the shock was described as a usual gas-dynamic shock followed by a relaxation zone in which the gas and particles return to equilibrium. The thickness of this zone, which is the total shock thickness in the gas-particle mixture, is of the order of the relaxation distance for a particle in the gas. In a nozzle, the area may change significantly over this relaxation zone so that the solution for a constant area duct is no longer adequate to describe the flow. In the present work, an asymptotic solution, which accounts for the area change, is obtained for the flow of a gas-particle mixture downstream of the shock in a nozzle, under the assumption of small slip between the particles and gas. This amounts to the assumption that the shock thickness is small compared with the length of the nozzle. The shock solution, valid in the region near the shock, is matched to the well known small-slip solution, which is valid in the flow downstream of the shock, to obtain a composite solution valid for the entire flow region. The solution is applied to a conical nozzle. A discussion of methods of finding the location of a shock in a nozzle is included.
Resumo:
Mergers and interacting galaxies are pivotal to the evolution of galaxies in the universe. They are the sites of prodigious star formation and key to understanding the starburst processes: the physical and chemical properties and the dynamics of the molecular gas. ULIRGs or Ultraluminous Infrared Galaxies are a result of many of these mergers. They host extreme starbursts, AGNs, and mergers. They are the perfect laboratory to probe the connection between starbursts, black hole accretion and mergers and to further our understanding of star formation and merging.
NGC 6240 and Arp 220 can be considered the founding members of this very active class of objects. They are in different stages of merging and hence are excellent case studies to further our understanding about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with CARMA C and B Configurations (2" and 0.5 - 0.8"). Multi-band imaging allows excitation analysis of HCN, HCO+, HNC, and CS along with CO transitions to constrain the properties of the gas. Our dataset is unique in that we have observed these lines at similar resolutions and high sensitivity which can be used to derive line ratios of faint high excitation lines.
Arp 220 has not had confirmed X-ray AGN detections for either nuclei. However, our observations indicate HCN/HNC ratios consistent with the chemistry of X-ray Dominated Regions (XDRs) -- a likely symptom of AGN. We calculated the molecular Hydrogen densities using each of the molecular species and conclude that assuming abundances of HNC and HCO+ similar to those in galactic sources are incorrect in the case of ULIRGs. The physical conditions in the dense molecular gas in ULIRGs alter these abundances. The derived H2 volume densities are ~ 5 x 104 cm-3 in both Arp 220 nuclei and ~ 104 cm-3 in NGC 6240.
Resumo:
A large portion of the noise in the light output of a laser oscillator is associated with the noise in the laser discharge. The effect of the discharge noise on the laser output has been studied. The discharge noise has been explained through an ac equivalent circuit of the laser discharge tube.
The discharge noise corresponds to time-varying spatial fluctuations in the electron density, the inverted population density and the dielectric permittivity of the laser medium from their equilibrium values. These fluctuations cause a shift in the resonant frequencies of the laser cavity. When the fluctuation in the dielectric permittivity of the laser medium is a longitudinally traveling wave (corresponding to the case in which moving striations exist in the positive column of the laser discharge), the laser output is frequency modulated.
The discharge noise has been analyzed by representing the laser discharge by an equivalent circuit. An appropriate ac equivalent circuit of a laser discharge tube has been obtained by considering the frequency spectrum of the current response of the discharge tube to an ac voltage modulation. It consist of a series ρLC circuit, which represents the discharge region, in parallel with a capacitance C', which comes mainly from the stray wiring. The equivalent inductance and capacitance of the discharge region have been calculated from the values of the resonant frequencies measured on discharge currents, gas pressures and lengths of the positive column. The experimental data provide for a set of typical values and dependencies on the discharge parameters for the equivalent inductance and capacitance of a discharge under laser operating conditions. It has been concluded from the experimental data that the equivalent inductance originates mainly from the positive column while the equivalent capacitance is due to the discharge region other than the positive column.
The ac equivalent circuit of the laser discharge has been shown analytically and experimentally to be applicable to analyzing the internal discharge noise. Experimental measurements have been made on the frequency of moving striations in a laser discharge. Its experimental dependence on the discharge current agrees very well with the expected dependence obtained from an analysis of the circuit and the experimental data on the equivalent circuit elements. The agreement confirms the validity of representing a laser discharge tube by its ac equivalent circuit in analyzing the striation phenomenon and other low frequency noises. Data have also been obtained for the variation of the striation frequency with an externally-applied longitudinal magnetic field and the increase in frequency has been attributed to a decrease in the equivalent inductance of the laser discharge.