112 resultados para High-order harmonics
Resumo:
This paper presents an analysis of phasor measurement method for tracking the fundamental power frequency to show if it has the performance necessary to cope with the requirements of power system protection and control. In this regard, several computer simulations presenting the conditions of a typical power system signal especially those highly distorted by harmonics, noise and offset, are provided to evaluate the response of the Phasor Measurement (PM) technique. A new method, which can shorten the delay of estimation, has also been proposed for the PM method to work for signals free of even-order harmonics.
Resumo:
In the past, high order series expansion techniques have been used to study the nonlinear equations that govern the form of periodic Stokes waves moving steadily on the surface of an inviscid fluid. In the present study, two such series solutions are recomputed using exact arithmetic, eliminating any loss of accuracy due to accumulation of round-off error, allowing a much greater number of terms to be found with confidence. It is shown that higher order behaviour of series generated by the solution casts doubt over arguments that rely on estimating the series’ radius of convergence. Further, the exact nature of the series is used to shed light on the unusual nature of convergence of higher order Pade approximants near the highest wave. Finally, it is concluded that, provided exact values are used in the series, these Pade approximants prove very effective in successfully predicting three turning points in both the dispersion relation and the total energy.
Resumo:
An algorithm based on the concept of combining Kalman filter and Least Error Square (LES) techniques is proposed in this paper. The algorithm is intended to estimate signal attributes like amplitude, frequency and phase angle in the online mode. This technique can be used in protection relays, digital AVRs, DGs, DSTATCOMs, FACTS and other power electronics applications. The Kalman filter is modified to operate on a fictitious input signal and provides precise estimation results insensitive to noise and other disturbances. At the same time, the LES system has been arranged to operate in critical transient cases to compensate the delay and inaccuracy identified because of the response of the standard Kalman filter. Practical considerations such as the effect of noise, higher order harmonics, and computational issues of the algorithm are considered and tested in the paper. Several computer simulations and a laboratory test are presented to highlight the usefulness of the proposed method. Simulation results show that the proposed technique can simultaneously estimate the signal attributes, even if it is highly distorted due to the presence of non-linear loads and noise.
Resumo:
A vertex-centred finite volume method (FVM) for the Cahn-Hilliard (CH) and recently proposed Cahn-Hilliard-reaction (CHR) equations is presented. Information at control volume faces is computed using a high-order least-squares approach based on Taylor series approximations. This least-squares problem explicitly includes the variational boundary condition (VBC) that ensures that the discrete equations satisfy all of the boundary conditions. We use this approach to solve the CH and CHR equations in one and two dimensions and show that our scheme satisfies the VBC to at least second order. For the CH equation we show evidence of conservative, gradient stable solutions, however for the CHR equation, strict gradient-stability is more challenging to achieve.
Resumo:
The benefits of applying tree-based methods to the purpose of modelling financial assets as opposed to linear factor analysis are increasingly being understood by market practitioners. Tree-based models such as CART (classification and regression trees) are particularly well suited to analysing stock market data which is noisy and often contains non-linear relationships and high-order interactions. CART was originally developed in the 1980s by medical researchers disheartened by the stringent assumptions applied by traditional regression analysis (Brieman et al. [1984]). In the intervening years, CART has been successfully applied to many areas of finance such as the classification of financial distress of firms (see Frydman, Altman and Kao [1985]), asset allocation (see Sorensen, Mezrich and Miller [1996]), equity style timing (see Kao and Shumaker [1999]) and stock selection (see Sorensen, Miller and Ooi [2000])...
Resumo:
This work identifies the limitations of n-way data analysis techniques in multidimensional stream data, such as Internet chat room communications data, and establishes a link between data collection and performance of these techniques. Its contributions are twofold. First, it extends data analysis to multiple dimensions by constructing n-way data arrays known as high order tensors. Chat room tensors are generated by a simulator which collects and models actual communication data. The accuracy of the model is determined by the Kolmogorov-Smirnov goodness-of-fit test which compares the simulation data with the observed (real) data. Second, a detailed computational comparison is performed to test several data analysis techniques including svd [1], and multi-way techniques including Tucker1, Tucker3 [2], and Parafac [3].
Resumo:
Dynamic capability theory asserts that the learning capabilities of construction organisations influence the degree to which value-for-money (VfM) is achieved on collaborative projects. However, there has been little study conducted to verify this relationship. The evidence is particularly limited within the empirical context of infrastructure delivery in Australia. Primarily drawing on the theoretical perspectives of the resource-based view of the firm (e.g. Barney 1991), dynamic capabilities (e.g. Helfat et al. 2007), absorptive capacity (e.g. Lane et al. 2006) and knowledge management (e.g. Nonaka 1994), this paper conceptualises learning capability as a knowledge-based dynamic capability. Learning capability builds on the micro-foundations of high-order learning routines, which are deliberately developed by construction organisations for managing collaborative projects. Based on this conceptualisation of learning capability, an exploratory case study was conducted. The study investigated the operational and higher-order learning routines adopted by a project alliance team to successfully achieve VfM. The case study demonstrated that the learning routines of the alliance project were developed and modified by the continual joint learning activities of participant organisations. Project-level learning routines were found to significantly influence the development of organisational-level learning routines. In turn, the learning outcomes generated from the alliance project appeared to significantly influence the development of project management routines and contractual arrangements applied by the participant organisations in subsequent collaborative projects. The case study findings imply that the higher-order learning routines that underpin the learning capability of construction organisations have the potential to influence the VfM achieved on both current and future collaborative projects.
Resumo:
Dengue virus (DENV) transmission in Australia is driven by weather factors and imported dengue fever (DF) cases. However, uncertainty remains regarding the threshold effects of high-order interactions among weather factors and imported DF cases and the impact of these factors on autochthonous DF. A time-series regression tree model was used to assess the threshold effects of natural temporal variations of weekly weather factors and weekly imported DF cases in relation to incidence of weekly autochthonous DF from 1 January 2000 to 31 December 2009 in Townsville and Cairns, Australia. In Cairns, mean weekly autochthonous DF incidence increased 16.3-fold when the 3-week lagged moving average maximum temperature was <32 °C, the 4-week lagged moving average minimum temperature was ≥24 °C and the sum of imported DF cases in the previous 2 weeks was >0. When the 3-week lagged moving average maximum temperature was ≥32 °C and the other two conditions mentioned above remained the same, mean weekly autochthonous DF incidence only increased 4.6-fold. In Townsville, the mean weekly incidence of autochthonous DF increased 10-fold when 3-week lagged moving average rainfall was ≥27 mm, but it only increased 1.8-fold when rainfall was <27 mm during January to June. Thus, we found different responses of autochthonous DF incidence to weather factors and imported DF cases in Townsville and Cairns. Imported DF cases may also trigger and enhance local outbreaks under favorable climate conditions.
Resumo:
The numerical solution in one space dimension of advection--reaction--diffusion systems with nonlinear source terms may invoke a high computational cost when the presently available methods are used. Numerous examples of finite volume schemes with high order spatial discretisations together with various techniques for the approximation of the advection term can be found in the literature. Almost all such techniques result in a nonlinear system of equations as a consequence of the finite volume discretisation especially when there are nonlinear source terms in the associated partial differential equation models. This work introduces a new technique that avoids having such nonlinear systems of equations generated by the spatial discretisation process when nonlinear source terms in the model equations can be expanded in positive powers of the dependent function of interest. The basis of this method is a new linearisation technique for the temporal integration of the nonlinear source terms as a supplementation of a more typical finite volume method. The resulting linear system of equations is shown to be both accurate and significantly faster than methods that necessitate the use of solvers for nonlinear system of equations.
Resumo:
A sub‒domain smoothed Galerkin method is proposed to integrate the advantages of mesh‒free Galerkin method and FEM. Arbitrarily shaped sub‒domains are predefined in problems domain with mesh‒free nodes. In each sub‒domain, based on mesh‒free Galerkin weak formulation, the local discrete equation can be obtained by using the moving Kriging interpolation, which is similar to the discretization of the high‒order finite elements. Strain smoothing technique is subsequently applied to the nodal integration of sub‒domain by dividing the sub‒domain into several smoothing cells. Moreover, condensation of DOF can also be introduced into the local discrete equations to improve the computational efficiency. The global governing equations of present method are obtained on the basis of the scheme of FEM by assembling all local discrete equations of the sub‒domains. The mesh‒free properties of Galerkin method are retained in each sub‒domain. Several 2D elastic problems have been solved on the basis of this newly proposed method to validate its computational performance. These numerical examples proved that the newly proposed sub‒domain smoothed Galerkin method is a robust technique to solve solid mechanics problems based on its characteristics of high computational efficiency, good accuracy, and convergence.
Resumo:
This paper presents a novel framework to further advance the recent trend of using query decomposition and high-order term relationships in query language modeling, which takes into account terms implicitly associated with different subsets of query terms. Existing approaches, most remarkably the language model based on the Information Flow method are however unable to capture multiple levels of associations and also suffer from a high computational overhead. In this paper, we propose to compute association rules from pseudo feedback documents that are segmented into variable length chunks via multiple sliding windows of different sizes. Extensive experiments have been conducted on various TREC collections and our approach significantly outperforms a baseline Query Likelihood language model, the Relevance Model and the Information Flow model.
Resumo:
Bidirectional Inductive Power Transfer (IPT) systems are preferred for Vehicle-to-Grid (V2G) applications. Typically, bidirectional IPT systems consist of high order resonant networks, and therefore, the control of bidirectional IPT systems has always been a difficulty. To date several different controllers have been reported, but these have been designed using steady-state models, which invariably, are incapable of providing an accurate insight into the dynamic behaviour of the system A dynamic state-space model of a bidirectional IPT system has been reported. However, currently this model has not been used to optimise the design of controllers. Therefore, this paper proposes an optimised controller based on the dynamic model. To verify the operation of the proposed controller simulated results of the optimised controller and simulated results of another controller are compared. Results indicate that the proposed controller is capable of accurately and stably controlling the power flow in a bidirectional IPT system.
Resumo:
We propose a topological localization method based on optical flow information. We analyse the statistical characteristics of the optical flow signal and demonstrate that the flow vectors can be used to identify and describe key locations in the environment. The key locations (nodes) correspond to significant scene changes and depth discontinuities. Since optical flow vectors contain position, magnitude and angle information, for each node, we extract low and high order statistical moments of the vectors and use them as descriptors for that node. Once a database of nodes and their corresponding optical flow features is created, the robot can perform topological localization by using the Mahalanobis distance between the current frame and the database. This is supported by field trials, which illustrate the repeatability of the proposed method for detecting and describing key locations in indoor and outdoor environments in challenging and diverse lighting conditions.
Resumo:
This project is a step forward in the study of text mining where enhanced text representation with semantic information plays a significant role. It develops effective methods of entity-oriented retrieval, semantic relation identification and text clustering utilizing semantically annotated data. These methods are based on enriched text representation generated by introducing semantic information extracted from Wikipedia into the input text data. The proposed methods are evaluated against several start-of-art benchmarking methods on real-life data-sets. In particular, this thesis improves the performance of entity-oriented retrieval, identifies different lexical forms for an entity relation and handles clustering documents with multiple feature spaces.