46 resultados para Frozen ground
Resumo:
This study was part of an integrated project developed in response to concerns regarding current and future land practices affecting water quality within coastal catchments and adjacent marine environments. Two forested coastal catchments on the Fraser Coast, Australia, were chosen as examples of low-modification areas with similar geomorphological and land-use characteristics to many other coastal zones in southeast Queensland. For this component of the overall project, organic , physico-chemical (Eh, pH and DO), ionic (Fe2+, Fe3+), and isotopic (ä13CDIC, ä15NDIN ä34SSO4) data were used to characterise waters and identify sources and processes contributing to concentrations and form of dissolved Fe, C, N and S within the ground and surface waters of these coastal catchments. Three sites with elevated Fe concentrations are discussed in detail. These included a shallow pool with intermittent interaction with the surface water drainage system, a monitoring well within a semi-confined alluvial aquifer, and a monitoring well within the fresh/saline water mixing zone adjacent to an estuary. Conceptual models of processes occurring in these environments are presented. The primary factors influencing Fe transport were; microbial reduction of Fe3+ oxyhydroxides in groundwaters and in the hyporheic zone of surface drainage systems, organic input available for microbial reduction and Fe3+ complexation, bacterial activity for reduction and oxidation, iron curtain effects where saline/fresh water mixing occurs, and variation in redox conditions with depth in ground and surface water columns. Data indicated that groundwater seepage appears a more likely source of Fe to coastal waters (during periods of low rainfall) via tidal flux. The drainage system is ephemeral and contributes little discharge to marine waters. However, data collected during a high rainfall event indicated considerable Fe loads can be transported to the estuary mouth from the catchment.
Resumo:
Airports are currently being pressured to operate in a more environmentally-sensitive manner; as a response, airports have integrated environmental policies into their operations. However, environmental concerns regarding automobile traffic and related emissions have yet to be addressed. While the automobile is the dominant air passenger ground transportation mode at US airports, services facilitating automobile usage including public parking and car rentals are a major airport revenue source. Less than 20 US hub airports have direct access to rail-based transportation modes. New rail transportation projects serving additional airports are either being consideration or under construction. Regardless of whether an airport has direct access to rail-based transportation modes, the air passenger ground transportation modal split at US airports remain low in comparison to those in Asia and Europe. The high cost of providing additional US airports with direct rail connections in an era of severe governmental budgetary cutbacks is making the “build it and they will come” mindset untenable. Governmental policies are but one factor determining whether programs increasing transit usage results in automobile traffic reductions and related emissions. This study reveals that a significant percentage of the busiest US airports do not have policies fostering increases in the air passenger ground transportation modal split. A case study of one US airport is presented that has successfully adopted a transit first policy to achieve a high air passenger ground transportation modal split and facilitate the availability of rail-based transportation services.
Resumo:
This study contributes to the understanding of the contribution of financial reserves to sustaining nonprofit organisations. Recognising the limited recent Australian research in the area of nonprofit financial vulnerability, it specifically examines financial reserves held by signatories to the Code of Conduct of the Australian Council for International Development (ACFID) for the years 2006 to 2010. As this period includes the Global Financial Crisis, it presents a unique opportunity to observe the role of savings in a period of heightened financial threats to sustainability. The need for nonprofit entities to maintain reserves, while appearing intuitively evident, is neither unanimously accepted nor supported by established theoretic constructs. Some early frameworks attempt to explain the savings behaviour of nonprofit organisations and its role in organisational sustainability. Where researchers have considered the issue, its treatment has usually been either purely descriptive or alternatively, peripheral to a broader attempt to predict financial vulnerability. Given the importance of nonprofit entities to civil society, the sustainability of these organisations during times of economic contraction, such as the recent Global Financial Crisis, is a significant issue. Widespread failure of nonprofits, or even the perception of failure, will directly affect, not only those individuals who access their public goods and services, but would also have impacts on public confidence in both government and the sectors’ ability to manage and achieve their purpose. This study attempts to ‘shine a light’ on the paradox inherent in considering nonprofit savings. On the one hand, a public prevailing view is that nonprofit organisations should not hoard and indeed, should spend all of their funds on the direct achievement of their purposes. Against this, is the commonsense need for a financial buffer if only to allow for the day to day contingencies of pay rises and cost increases. At the entity level, the extent of reserves accumulated (or not) is an important consideration for Management Boards. The general public are also interested in knowing the level of funds held by nonprofits as a measure of both their commitment to purpose and as an indicator of their effectiveness. There is a need to communicate the level and prevalence of reserve holdings, balancing the prudent hedging of uncertainty against a sense of resource hoarding in the mind of donors. Finally, funders (especially governments) are interested in knowing the appropriate level of reserves to facilitate the ongoing sustainability of the sector. This is particularly so where organisations are involved in the provision of essential public goods and services. At a scholarly level, the study seeks to provide a rationale for this behaviour within the context of appropriate theory. At a practical level, the study seeks to give an indication of the drivers for savings, the actual levels of reserves held within the sector studied, as well as an indication as to whether the presence of reserves did mitigate the effects of financial turmoil during the Global Financial Crisis. The argument is not whether there is a need to ensure sustainability of nonprofits, but rather how it is to be done and whether the holding of reserves (net assets) is an essential element is achieving this. While the study offers no simple answers, it does appear that the organisations studied present as two groups, the ‘savers’ who build reserves and keep ‘money in the bank’ and ‘spender-delivers’ who put their resources ‘on the ground’. To progress an understanding of this dichotomy, the study suggests a need to move from its current approach to one which needs to more closely explore accounts based empirical donor attitude and nonprofit Management Board strategy.
Resumo:
Interaction design is about finding better ways for people to interact with each other through communication technologies. Interaction design involves understanding how people learn, work and play so that we can engineer better, more valuable technologies that are more appropriate to the contexts of their lives. As an academic discipline, interaction design is about the people-research that underpins these technologies. As a comparative tool for business it is about creating innovations that have market pull rather than a technology push. Many examples can be found which demonstrate the value of interaction design within both industry and academia, however finding the common ground between this spectrum of activity is often difficult. Differences in language, approach and outcomes often lead to researchers from either side of the spectrum complaining of an uncommon ground, which often results in a lack of collaboration within such projects. However, as demonstrated through this case study, rather than focussing on finding a common ground to assist in better collaboration between industry and academia, celebrating the uniqueness of each approach whilst bridging them with a common language can lead to new knowledge and commercial innovation. This case study will focus on the research and development phase of a Diversionary Therapy Platform, a collaboration between the Australasian CRC for Interaction Design and The Royal Children's Hospital (Brisbane, Australia). This collaborative effort has led to the formation of a new commercial venture, Diversionary Therapy Pty Ltd, which aims to bring to the market the research outcomes from the project. The case study will outline the collaborative research and development process undertaken between the many stakeholders and reflect on the challenges identified within this process. A key finding from this collaboration was allowing for the co-existence of the common and uncommon ground throughout the project. This concept will be discussed further throughout this paper.
Resumo:
Shaky Ground was a solo exhibition of works by Charles Robb held at Ryan Renshaw gallery, Brisbane in 2012. The exhibition comprised three sculptural works: a white rotating roundel with a drawing of the artist as seen from above; an artificial rock with a spinning aniseed ball nestled in one of its fissures; and a sculptural portrait of the artist dressed in a protective dust suit which was mounted perpendicular to the wall. The works were derivations or reorientations of previously exhibited work and established an ambiguous field of associations with each other based on formal characteristics or their proximity to the production site and processes. In so doing, the work formed part of the artist's ongoing exploration of sculpture, subjectivity and autogenous approaches to art practice.
Resumo:
Background Surveillance programs and research for acute respiratory infections in remote Australian communities are complicated by difficulties in the storage and transport of frozen samples to urban laboratories for testing. This study assessed the sensitivity of a simple method for transporting nasal swabs from a remote setting for bacterial polymerase chain reaction (PCR) testing. Methods We sampled every individual who presented to a remote community clinic over a three week period in August at a time of low influenza and no respiratory syncytial virus activity. Two anterior nasal swabs were collected from each participant. The left nare specimen was mailed to the laboratory via routine postal services. The right nare specimen was transported frozen. Testing for six bacterial species was undertaken using real-time PCR. Results One hundred and forty participants were enrolled who contributed 150 study visits and paired specimens for testing. Respiratory illnesses accounted for 10% of the reasons for presentation. Bacteria were identified in 117 (78%) presentations for 110 (79.4%) individuals; Streptococcus pneumoniae and Haemophilus influenzae were the most common (each identified in 58% of episodes). The overall sensitivity for any bacterium detected in mailed specimens was 82.2% (95% CI 73.6, 88.1) compared to 94.8% (95% CI 89.4, 98.1) for frozen specimens. The sensitivity of the two methods varied by species identified. Conclusion The mailing of unfrozen nasal specimens from remote communities appears to influence the utility of the specimen for bacterial studies, with a loss in sensitivity for the detection of any species overall. Further studies are needed to confirm our finding and to investigate the possible mechanisms of effect. Clinical trial registration Australia and New Zealand Clinical Trials Registry Number: ACTRN12609001006235. Keywords: Respiratory bacteria; RT-PCR; Specimen transport; Laboratory methods
Resumo:
This work is motivated by the need to efficiently machine the edges of ophthalmic polymer lenses for mounting in spectacle or instrument frames. The polymer materials used are required to have suitable optical characteristics such high refractive index and Abbe number, combined with low density and high scratch and impact resistance. Edge surface finish is an important aesthetic consideration; its quality is governed by the material removal operation and the physical properties of the material being processed. The wear behaviour of polymer materials is not as straightforward as for other materials due to their molecular and structural complexity, not to mention their time-dependent properties. Four commercial ophthalmic polymers have been studied in this work using nanoindentation techniques which are evaluated as tools for probing surface mechanical properties in order to better understand the grinding response of polymer materials.
Resumo:
Due to increased number of terrorist attacks in recent years, loads induced by explosions need to be incorporated in building designs. For safer performance of a structure, its foundation should have sufficient strength and stability. Therefore, prior to any reconstruction or rehabilitation of a building subjected to blast, it is important to examine adverse effects on the foundation caused by blast induced ground shocks. This paper evaluates the effects of a buried explosion on a pile foundation. It treats the dynamic response of the pile in saturated sand, using explicit dynamic nonlinear finite element software LS-DYNA. The blast induced wave propagation in the soil and the horizontal deformation of pile are presented and the results are discussed. Further, a parametric study is carried out to evaluate the effect of varying the explosive shape on the pile response. This information can be used to evaluate the vulnerability of piled foundations to credible blast events as well as develop guidance for their design.
Resumo:
Objectives – To describe the development of an educational workshop to develop procedural skills in undergraduate Paramedic students using fresh frozen cadavers and to report the student’s assessment of the program. Methods – A six-hour anatomy based workshop was developed using fresh frozen cadavers to teach a range of airway and invasive procedural skills to second year undergraduate paramedic students. Embedded QUAN (qual) methodology will be utilised to evaluate the student’s satisfaction, perception and quality of teaching as compared to other existing clinical teaching techniques such as high fidelity simulation. Students will be asked to complete an anonymous validated survey (10 questions formulated on a 5 point Likert scale) and provide a qualitative feedback pre and post the six-hour workshop. Results – This is a prospective study planned for September 2013. Low-risk human research ethics are being sought. Teaching evaluation results from the inaugural 2012 workshop (undergraduate and postgraduate Paramedic students) and interim results for 2013 will be presented. Conclusions – Clinical teaching using fresh frozen cadavers thus far has predominately been used in the education of medical and surgical trainees. A number of studies have found them to be effective and in some cases superior to traditional high fidelity simulation teaching strategies. Fresh frozen cadavers are said to provide perfect anatomy, normal tissue consistency and a realistic operative training experience (Lloyd, Maxwell-Armstrong et al. 2011). The authors believe that this study will show that the use of fresh frozen cadavers offers a safe and effective mode to teach procedural skills to student paramedics that will help bridge the skills gap and increase confidence prior to students undertaking such interventions on living patients. A modified training program may be formulated for general practitioners undertaking Emergency Medicine Advanced Rural Skills.
Resumo:
A large number of methods have been published that aim to evaluate various components of multi-view geometry systems. Most of these have focused on the feature extraction, description and matching stages (the visual front end), since geometry computation can be evaluated through simulation. Many data sets are constrained to small scale scenes or planar scenes that are not challenging to new algorithms, or require special equipment. This paper presents a method for automatically generating geometry ground truth and challenging test cases from high spatio-temporal resolution video. The objective of the system is to enable data collection at any physical scale, in any location and in various parts of the electromagnetic spectrum. The data generation process consists of collecting high resolution video, computing accurate sparse 3D reconstruction, video frame culling and down sampling, and test case selection. The evaluation process consists of applying a test 2-view geometry method to every test case and comparing the results to the ground truth. This system facilitates the evaluation of the whole geometry computation process or any part thereof against data compatible with a realistic application. A collection of example data sets and evaluations is included to demonstrate the range of applications of the proposed system.
Resumo:
This document describes large, accurately calibrated and time-synchronised datasets, gathered in controlled environmental conditions, using an unmanned ground vehicle equipped with a wide variety of sensors. These sensors include: multiple laser scanners, a millimetre wave radar scanner, a colour camera and an infra-red camera. Full details of the sensors are given, as well as the calibration parameters needed to locate them with respect to each other and to the platform. This report also specifies the format and content of the data, and the conditions in which the data have been gathered. The data collection was made in two different situations of the vehicle: static and dynamic. The static tests consisted of sensing a fixed ’reference’ terrain, containing simple known objects, from a motionless vehicle. For the dynamic tests, data were acquired from a moving vehicle in various environments, mainly rural, including an open area, a semi-urban zone and a natural area with different types of vegetation. For both categories, data have been gathered in controlled environmental conditions, which included the presence of dust, smoke and rain. Most of the environments involved were static, except for a few specific datasets which involve the presence of a walking pedestrian. Finally, this document presents illustrations of the effects of adverse environmental conditions on sensor data, as a first step towards reliability and integrity in autonomous perceptual systems.
Resumo:
This work aims to promote reliability and integrity in autonomous perceptual systems, with a focus on outdoor unmanned ground vehicle (UGV) autonomy. For this purpose, a comprehensive UGV system, comprising many different exteroceptive and proprioceptive sensors has been built. The first contribution of this work is a large, accurately calibrated and synchronised, multi-modal data-set, gathered in controlled environmental conditions, including the presence of dust, smoke and rain. The data have then been used to analyse the effects of such challenging conditions on perception and to identify common perceptual failures. The second contribution is a presentation of methods for mitigating these failures to promote perceptual integrity in adverse environmental conditions.
Resumo:
This work is motivated by the need to efficiently machine the edges of ophthalmic polymer lenses for mounting in spectacle or instrument frames. The polymer materials used are required to have suitable optical characteristics such high refractive index and Abbe number, combined with low density and high scratch and impact resistance. Edge surface finish is an important aesthetic consideration; its quality is governed by the material removal operation and the physical properties of the material being processed. The wear behaviour of polymer materials is not as straightforward as for other materials due to their molecular and structural complexity, not to mention their time-dependent properties. Four commercial ophthalmic polymers have been studied in this work using nanoindentation techniques which are evaluated as tools for probing surface mechanical properties in order to better understand the grinding response of polymer materials.
Resumo:
The cation\[Si,C,O](+) has been generated by 1) the electron ionisation (EI) of tetramethoxysilane and 2) chemical ionisation (CI) of a mixture of silane and carbon monoxide. Collisional activation (CA) experiments performed for mass-selected \[Si,C,O](+), generated by using both methods, indicate that the structure is not inserted OSiC+; however, a definitive structural assignment as Si+-CO, Si+-OC or some cyclic variant is impossible based on these results alone. Neutralisation-reionisation (+NR+) experiments for EI-generated \[Si,C,O](+) reveal a small peak corresponding to SiC+, but no detectable SiO+ signal, and thus establishes the existence of the Si+-CO isomer. CCSD(T)//B3LYP calculations employing a triple-zeta basis set have been used to explore the doublet and quartet potential-energy surfaces of the cation, as well as some important neutral states The results suggest that both Si+-CO and Si+ - OC isomers are feasible; however, the global minimum is (2)Pi SiCO+. Isomeric (2)Pi SiOC+ is 12.1 kcal mol(-1) less stable than (2)Pi SiCO+, and all quartet isomers are much higher in energy. The corresponding neutrals Si-CO and Si-OC are also feasible, but the lowest energy Si - OC isomer ((3)A") is bound by only 1.5 kcal mol(-1). We attribute most, if nor all, of the recovery signal in the +NR' experiment to SiCO+ survivor ions. The nature of the bonding in the lowest energy isomers of Si+ -(CO,OC) is interpreted with the aid of natural bond order analyses, and the ground stale bonding of SiCO+ is discussed in relation to classical analogues such as metal carbonyls and ketenes.