437 resultados para Flow Vector Tracking
Resumo:
For many years, computer vision has lured researchers with promises of a low-cost, passive, lightweight and information-rich sensor suitable for navigation purposes. The prime difficulty in vision-based navigation is that the navigation solution will continually drift with time unless external information is available, whether it be cues from the appearance of the scene, a map of features (whether built online or known a priori), or from an externally-referenced sensor. It is not merely position that is of interest in the navigation problem. Attitude (i.e. the angular orientation of a body with respect to a reference frame) is integral to a visionbased navigation solution and is often of interest in its own right (e.g. flight control). This thesis examines vision-based attitude estimation in an aerospace environment, and two methods are proposed for constraining drift in the attitude solution; one through a novel integration of optical flow and the detection of the sky horizon, and the other through a loosely-coupled integration of Visual Odometry and GPS position measurements. In the first method, roll angle, pitch angle and the three aircraft body rates are recovered though a novel method of tracking the horizon over time and integrating the horizonderived attitude information with optical flow. An image processing front-end is used to select several candidate lines in a image that may or may not correspond to the true horizon, and the optical flow is calculated for each candidate line. Using an Extended Kalman Filter (EKF), the previously estimated aircraft state is propagated using a motion model and a candidate horizon line is associated using a statistical test based on the optical flow measurements and location of the horizon in the image. Once associated, the selected horizon line, along with the associated optical flow, is used as a measurement to the EKF. To evaluate the accuracy of the algorithm, two flights were conducted, one using a highly dynamic Uninhabited Airborne Vehicle (UAV) in clear flight conditions and the other in a human-piloted Cessna 172 in conditions where the horizon was partially obscured by terrain, haze and smoke. The UAV flight resulted in pitch and roll error standard deviations of 0.42° and 0.71° respectively when compared with a truth attitude source. The Cessna 172 flight resulted in pitch and roll error standard deviations of 1.79° and 1.75° respectively. In the second method for estimating attitude, a novel integrated GPS/Visual Odometry (GPS/VO) navigation filter is proposed, using a structure similar to a classic looselycoupled GPS/INS error-state navigation filter. Under such an arrangement, the error dynamics of the system are derived and a Kalman Filter is developed for estimating the errors in position and attitude. Through similar analysis to the GPS/INS problem, it is shown that the proposed filter is capable of recovering the complete attitude (i.e. pitch, roll and yaw) of the platform when subjected to acceleration not parallel to velocity for both the monocular and stereo variants of the filter. Furthermore, it is shown that under general straight line motion (e.g. constant velocity), only the component of attitude in the direction of motion is unobservable. Numerical simulations are performed to demonstrate the observability properties of the GPS/VO filter in both the monocular and stereo camera configurations. Furthermore, the proposed filter is tested on imagery collected using a Cessna 172 to demonstrate the observability properties on real-world data. The proposed GPS/VO filter does not require additional restrictions or assumptions such as platform-specific dynamics, map-matching, feature-tracking, visual loop-closing, gravity vector or additional sensors such as an IMU or magnetic compass. Since no platformspecific dynamics are required, the proposed filter is not limited to the aerospace domain and has the potential to be deployed in other platforms such as ground robots or mobile phones.
Resumo:
Typical flow fields in a stormwater gross pollutant trap (GPT) with blocked retaining screens were experimentally captured and visualised. Particle image velocimetry (PIV) software was used to capture the flow field data by tracking neutrally buoyant particles with a high speed camera. A technique was developed to apply the Image Based Flow Visualization (IBFV) algorithm to the experimental raw dataset generated by the PIV software. The dataset consisted of scattered 2D point velocity vectors and the IBFV visualisation facilitates flow feature characterisation within the GPT. The flow features played a pivotal role in understanding gross pollutant capture and retention within the GPT. It was found that the IBFV animations revealed otherwise unnoticed flow features and experimental artefacts. For example, a circular tracer marker in the IBFV program visually highlighted streamlines to investigate specific areas and identify the flow features within the GPT.
Resumo:
This paper is concerned with recent advances in the development of near wall-normal-free Reynolds-stress models, whose single point closure formulation, based on the inhomogeneity direction concept, is completely independent of the distance from the wall, and of the normal to the wall direction. In the present approach the direction of the inhomogeneity unit vector is decoupled from the coefficient functions of the inhomogeneous terms. A study of the relative influence of the particular closures used for the rapid redistribution terms and for the turbulent diffusion is undertaken, through comparison with measurements, and with a baseline Reynolds-stress model (RSM) using geometric wall normals. It is shown that wall-normal-free rsms can be reformulated as a projection on a tensorial basis that includes the inhomogeneity direction unit vector, suggesting that the theory of the redistribution tensor closure should be revised by taking into account inhomogeneity effects in the tensorial integrity basis used for its representation.
Resumo:
We applied a texture-based flow visualisation technique to a numerical hydrodynamic model of the Pumicestone Passage in southeast Queensland, Australia. The quality of the visualisations using our flow visualisation tool, are compared with animations generated using more traditional drogue release plot and velocity contour and vector techniques. The texture-based method is found to be far more effective in visualising advective flow within the model domain. In some instances, it also makes it easier for the researcher to identify specific hydrodynamic features within the complex flow regimes of this shallow tidal barrier estuary as compared with the direct and geometric based methods.
Resumo:
Abstract An experimental dataset representing a typical flow field in a stormwater gross pollutant trap (GPT) was visualised. A technique was developed to apply the image-based flow visualisation (IBFV) algorithm to the raw dataset. Particle image velocimetry (PIV) software was previously used to capture the flow field data by tracking neutrally buoyant particles with a high speed camera. The dataset consisted of scattered 2D point velocity vectors and the IBFV visualisation facilitates flow feature characterisation within the GPT. The flow features played a pivotal role in understanding stormwater pollutant capture and retention behaviour within the GPT. It was found that the IBFV animations revealed otherwise unnoticed flow features and experimental artefacts. For example, a circular tracer marker in the IBFV program visually highlighted streamlines to investigate the possible flow paths of pollutants entering the GPT. The investigated flow paths were compared with the behaviour of pollutants monitored during experiments.
Resumo:
Modulation and control of a cascade multilevel inverter, which has a high potential in future wind generation applications, are presented. The inverter is a combination of a high power, three level “bulk inverter” and a low power “conditioning inverter”. To minimize switching losses, the bulk inverter operates at a low frequency producing square wave outputs while high frequency conditioning inverter is used to suppress harmonic content produced by the bulk inverter output. This paper proposes an improved Space Vector Modulation (SVM) algorithm and a neutral point potential balancing technique for the inverter. Furthermore, a maximum power tracking controller for the Permanent Magnet Synchronous Generator (PMSG) is described in detail. The proposed SVM technique eliminates most of the computational burdens on the digital controller and renders a greater controllability under varying DC-link voltage conditions. The DC-link capacitor voltage balancing of both bulk and conditioning inverters is carried out using Redundant State Selection (RSS) method and is explained in detail. Experimental results are presented to verify the proposed modulation and control techniques.
Resumo:
Three thousand liters of water were infiltrated from a 4 m diameter pond to track flow and transport inside fractured carbonates with 20-40 % porosity. Sixteen time-lapse 3D Ground Penetrating Radar (GPR) surveys with repetition intervals between 2 hrs and 5 days monitored the spreading of the water bulb in the subsurface. Based on local travel time shifts between repeated GPR survey pairs, localized changes of volumetric water content can be related to the processes of wetting, saturation and drainage. Deformation bands consisting of thin sub vertical sheets of crushed grains reduce the magnitude of water content changes but enhance flow in sheet parallel direction. This causes an earlier break through across a stratigraphic boundary compared to porous limestone without deformation bands. This experiment shows how time-lapse 3D GPR or 4D GPR can non-invasively track ongoing flow processes in rock-volumes of over 100 m3.
Resumo:
This paper presents a novel vision-based underwater robotic system for the identification and control of Crown-Of-Thorns starfish (COTS) in coral reef environments. COTS have been identified as one of the most significant threats to Australia's Great Barrier Reef. These starfish literally eat coral, impacting large areas of reef and the marine ecosystem that depends on it. Evidence has suggested that land-based nutrient runoff has accelerated recent outbreaks of COTS requiring extensive use of divers to manually inject biological agents into the starfish in an attempt to control population numbers. Facilitating this control program using robotics is the goal of our research. In this paper we introduce a vision-based COTS detection and tracking system based on a Random Forest Classifier (RFC) trained on images from underwater footage. To track COTS with a moving camera, we embed the RFC in a particle filter detector and tracker where the predicted class probability of the RFC is used as an observation probability to weight the particles, and we use a sparse optical flow estimation for the prediction step of the filter. The system is experimentally evaluated in a realistic laboratory setup using a robotic arm that moves a camera at different speeds and heights over a range of real-size images of COTS in a reef environment.
Resumo:
The Lagrangian particle tracking provides an effective method for simulating the deposition of nano- particles as well as micro-particles as it accounts for the particle inertia effect as well as the Brownian excitation. However, using the Lagrangian approach for simulating ultrafine particles has been limited due to computational cost and numerical difficulties. The aim of this paper is to study the deposition of nano-particles in cylindrical tubes under laminar condition using the Lagrangian particle tracking method. The commercial Fluent software is used to simulate the fluid flow in the pipes and to study the deposition and dispersion of nano-particles. Different particle diameters as well as different pipe lengths and flow rates are examined. The results show good agreement between the calculated deposition efficiency and different analytic correlations in the literature. Furthermore, for the nano-particles with higher diameters and when the effect of inertia has a higher importance, the calculated deposition efficiency by the Lagrangian method is less than the analytic correlations based on Eulerian method due to statistical error or the inertia effect.
Resumo:
With new national targets for patient flow in public hospitals designed to increase efficiencies in patient care and resource use, better knowledge of events affecting length of stay will support improved bed management and scheduling of procedures. This paper presents a case study involving the integration of material from each of three databases in operation at one tertiary hospital and demonstrates it is possible to follow patient journeys from admission to discharge. What is known about this topic? At present, patient data at one Queensland tertiary hospital are assembled in three information systems: (1) the Hospital Based Corporate Information System (HBCIS), which tracks patients from in-patient admission to discharge; (2) the Emergency Department Information System (EDIS) containing patient data from presentation to departure from the emergency department; and (3) Operation Room Management Information System (ORMIS), which records surgical operations. What does this paper add? This paper describes how a new enquiry tool may be used to link the three hospital information systems for studying the hospital journey through different wards and/or operating theatres for both individual and groups of patients. What are the implications for practitioners? An understanding of the patients’ journeys provides better insight into patient flow and provides the tool for research relating to access block, as well as optimising the use of physical and human resources.
Resumo:
Two dimensional flow of a micropolar fluid in a porous channel is investigated. The flow is driven by suction or injection at the channel walls, and the micropolar model due to Eringen is used to describe the working fluid. An extension of Berman's similarity transform is used to reduce the governing equations to a set of non-linear coupled ordinary differential equations. The latter are solved for large mass transfer via a perturbation analysis where the inverse of the cross-flow Reynolds number is used as the perturbing parameter. Complementary numerical solutions for strong injection are also obtained using a quasilinearisation scheme, and good agreement is observed between the solutions obtained from the perturbation analysis and the computations.