108 resultados para Field Studies
Resumo:
Airports are vital sources of income to a country and city. Airports are often understood from a management perspective, rather than a passenger perspective. As passengers are a vital customer of airports, a passenger perspective can provide a novel approach in understanding and improving the airport experience. This paper focuses on the study of passenger experiences at airports. This research is built on recent investigations of passenger discretionary activities in airports by the authors, which have provided a new perspective on understanding the airport experience. The research reported in this paper involves field studies at three Australian airports. Seventy one people who had impending travel were recruited to take part in the field study. Data collection methods included video-recorded observation and post-travel interviews. Observations were coded and a list of activities performed was developed. These activities were then classified into an activity taxonomy, depending on the activity location and context. The study demonstrates that there is a wide range of activities performed by passengers as they navigate through the airport. The emerging activity taxonomy consists of eight categories. They include: (i) processing (ii) preparatory (iii) consumptive (iv) social (v) entertainment (vi) passive (vii) queuing and (viii) moving. The research provides a novel perspective to understand the experience of passenger at international airports. It has been applied in airports to improve passenger processing and reduce waiting times. The significance of the taxonomy lies in its potential application to airport terminal design and how it can be utilised to understand and improve the passenger experience.
Resumo:
Knowledge of cable parameters has been well established but a better knowledge of the environment in which the cables are buried lags behind. Research in Queensland University of Technology has been aimed at obtaining and analysing actual daily field values of thermal resistivity and diffusivity of the soil around power cables. On-line monitoring systems have been developed and installed with a data logger system and buried spheres that use an improved technique to measure thermal resistivity and diffusivity over a short period. Results based on long term continuous field data are given. A probabilistic approach is developed to establish the correlation between the measured field thermal resistivity values and rainfall data from weather bureau records. This data from field studies can reduce the risk in cable rating decisions and provide a basis for reliable prediction of “hot spot” of an existing cable circuit
Resumo:
Reviews into teacher education and reform measures, such as implementing professional standards for teachers, are designed to raise the quality of education. Such reviews and reforms also target preservice teachers; hence universities examine their teacher education programs to address these issues, including developing programs that are current with the literature. Over the past fifteen years, concerns have arisen about Australian early adolescents and their disengagement from the schooling system, their “at risk” behaviour and their need for social, emotional and academic support. These concerns have prompted a middle schooling movement in Australia with the literature recognising a need for specialised middle school teachers. As a result, various universities have responded by developing courses specifically designed to graduate teachers who possess the theoretical and pedagogical knowledge for engaging early adolescent learners. This mixed-method study analysed the responses of preservice teachers from three universities across two states in Australia near the completion of their middle years teacher preparation program. The three aims of the study were to: (1) investigate final-year preservice teachers’ perceptions of their confidence to teach in the middle years of schooling; (2) analyse the experiences included in their teacher preparation course that made them feel confident; and (3) describe strategies for enhancing middle schooling teacher education preparation. Data were gathered from final-year preservice teachers (n=142) using a survey that was developed in response to middle schooling literature and the Professional Standards for Queensland Teachers (Queensland College of Teachers, 2006). A questionnaire collected extended information about the participants’ (n=142) experiences that made them feel confident. It also gathered information about strategies for enhancing middle years teacher preparation. One-to-one, 45-minute interviews (n=10) were conducted to elicit in-depth responses aligned with the research aims. Quantitative results indicated that the majority of preservice teachers (n=142) claimed confidence associated with survey items relating to creating a positive classroom environment (range: 70-97%), developing positive relationships for teaching (71-98%), pedagogical knowledge for teaching (72-95%), and implementation of teaching (70-91%). Qualitative findings suggested that the experiences that assisted them to be confident for teaching were practicum and associated field studies coursework, a positive mentor teacher, specifically designed middle years subjects, the pedagogical approaches of university staff, and other real-world experiences such as volunteering in schools and participating in professional development alongside their mentors. This study demonstrated that universities presenting middle years teacher preparation need to consider: the quality of the practicum experience; the suitability of mentor teachers; the significance and practicalities of middle years subjects; university lecturers’ modelling of pedagogical practices; and the inclusion of real-world learning experiences. Although the findings of this study provided evidence as to how preservice teacher confidence for teaching has been influenced by their middle schooling teacher preparation, further research is required to investigate how confidence translates into practice within their first years of teaching.
Resumo:
From human biomonitoring data that are increasingly collected in the United States, Australia, and in other countries from large-scale field studies, we obtain snap-shots of concentration levels of various persistent organic pollutants (POPs) within a cross section of the population at different times. Not only can we observe the trends within this population with time, but we can also gain information going beyond the obvious time trends. By combining the biomonitoring data with pharmacokinetic modeling, we can re-construct the time-variant exposure to individual POPs, determine their intrinsic elimination half-lives in the human body, and predict future levels of POPs in the population. Different approaches have been employed to extract information from human biomonitoring data. Pharmacokinetic (PK) models were combined with longitudinal data1, with single2 or multiple3 average concentrations of a cross-sectional data (CSD), or finally with multiple CSD with or without empirical exposure data4. In the latter study, for the first time, the authors based their modeling outputs on two sets of CSD and empirical exposure data, which made it possible that their model outputs were further constrained due to the extensive body of empirical measurements. Here we use a PK model to analyze recent levels of PBDE concentrations measured in the Australian population. In this study, we are able to base our model results on four sets5-7 of CSD; we focus on two PBDE congeners that have been shown3,5,8-9 to differ in intake rates and half-lives with BDE-47 being associated with high intake rates and a short half-life and BDE-153 with lower intake rates and a longer half-life. By fitting the model to PBDE levels measured in different age groups in different years, we determine the level of intake of BDE-47 and BDE-153, as well as the half-lives of these two chemicals in the Australian population.
Resumo:
Atmospheric ultrafine particles play an important role in affecting human health, altering climate and degrading visibility. Numerous studies have been conducted to better understand the formation process of these particles, including field measurements, laboratory chamber studies and mathematical modeling approaches. Field studies on new particle formation found that formation processes were significantly affected by atmospheric conditions, such as the availability of particle precursors and meteorological conditions. However, those studies were mainly carried out in rural areas of the northern hemisphere and information on new particle formation in urban areas, especially those in subtropical regions, is limited. In general, subtropical regions display a higher level of solar radiation, along with stronger photochemical reactivity, than those regions investigated in previous studies. However, based on the results of these studies, the mechanisms involved in the new particle formation process remain unclear, particularly in the Southern Hemisphere. Therefore, in order to fill this gap in knowledge, a new particle formation study was conducted in a subtropical urban area in the Southern Hemisphere during 2009, which measured particle size distribution in different locations in Brisbane, Australia. Characterisation of nucleation events was conducted at the campus building of the Queensland University of Technology (QUT), located in an urban area of Brisbane. Overall, the annual average number concentrations of ultrafine, Aitken and nucleation mode particles were found to be 9.3 x 103, 3.7 x 103 and 5.6 x 103 cm-3, respectively. This was comparable to levels measured in urban areas of northern Europe, but lower than those from polluted urban areas such as the Yangtze River Delta, China and Huelva and Santa Cruz de Tenerife, Spain. Average particle number concentration (PNC) in the Brisbane region did not show significant seasonal variation, however a relatively large variation was observed during the warmer season. Diurnal variation of Aitken and nucleation mode particles displayed different patterns, which suggested that direct vehicle exhaust emissions were a major contributor of Aitken mode particles, while nucleation mode particles originated from vehicle exhaust emissions in the morning and photochemical production at around noon. A total of 65 nucleation events were observed during 2009, in which 40 events were classified as nucleation growth events and the remainder were nucleation burst events. An interesting observation in this study was that all nucleation growth events were associated with vehicle exhaust emission plumes, while the nucleation burst events were associated with industrial emission plumes from an industrial area. The average particle growth rate for nucleation events was found to be 4.6 nm hr-1 (ranging from 1.79-7.78 nm hr-1), which is comparable to other urban studies conducted in the United States, while monthly particle growth rates were found to be positively related to monthly solar radiation (r = 0.76, p <0.05). The particle growth rate values reported in this work are the first of their kind to be reported for the subtropical urban area of Australia. Furthermore, the influence of nucleation events on PNC within the urban airshed was also investigated. PNC was simultaneously measured at urban (QUT), roadside (Woolloongabba) and semi-urban (Rocklea) sites in Brisbane during 2009. Total PNC at these sites was found to be significantly affected by regional nucleation events. The relative fractions of PNC to total daily PNC observed at QUT, Woolloongabba and Rocklea were found to be 12%, 9% and 14%, respectively, during regional nucleation events. These values were higher than those observed as a result of vehicle exhaust emissions during weekday mornings, which ranged from 5.1-5.5% at QUT and Woolloongabba. In addition, PNC in the semi-urban area of Rocklea increased by a factor of 15.4 when it was upwind from urban pollution sources under the influence of nucleation burst events. Finally, we investigated the influence of sulfuric acid on new particle formation in the study region. A H2SO4 proxy was calculated by using [SO2], solar radiation and particle condensation sink data to represent the new particle production strength for the urban, roadside and semi-urban areas of Brisbane during the period June-July of 2009. The temporal variations of the H2SO4 proxies and the nucleation mode particle concentration were found to be in phase during nucleation events in the urban and roadside areas. In contrast, the peak of proxy concentration occurred 1-2 hr prior to the observed peak in nucleation mode particle concentration at the downwind semi-urban area of Brisbane. A moderate to strong linear relationship was found between the proxy and the freshly formed particles, with r2 values of 0.26-0.77 during the nucleation events. In addition, the log[H2SO4 proxy] required to produce new particles was found to be ~1.0 ppb Wm-2 s and below 0.5 ppb Wm-2 s for the urban and semi-urban areas, respectively. The particle growth rates were similar during nucleation events at the three study locations, with an average value of 2.7 ± 0.5 nm hr-1. This result suggested that a similar nucleation mechanism dominated in the study region, which was strongly related to sulphuric acid concentration, however the relationship between the proxy and PNC was poor in the semi-urban area of Rocklea. This can be explained by the fact that the nucleation process was initiated upwind of the site and the resultant particles were transported via the wind to Rocklea. This explanation is also supported by the higher geometric mean diameter value observed for particles during the nucleation event and the time lag relationship between the H2SO4 proxy and PNC observed at Rocklea. In summary, particle size distribution was continuously measured in a subtropical urban area of southern hemisphere during 2009, the findings from which formed the first particle size distribution dataset in the study region. The characteristics of nucleation events in the Brisbane region were quantified and the properties of the nucleation growth and burst events are discussed in detail using a case studies approach. To further investigate the influence of nucleation events on PNC in the study region, PNC was simultaneously measured at three locations to examine the spatial variation of PNC during the regional nucleation events. In addition, the impact of upwind urban pollution on the downwind semi-urban area was quantified during these nucleation events. Sulphuric acid was found to be an important factor influencing new particle formation in the urban and roadside areas of the study region, however, a direct relationship with nucleation events at the semi-urban site was not observed. This study provided an overview of new particle formation in the Brisbane region, and its influence on PNC in the surrounding area. The findings of this work are the first of their kind for an urban area in the southern hemisphere.
Resumo:
Recent experimental evidence has shown that learning occurs in the host selection behaviour of Helicoverpa armigera (Hübner), one of the world‘s most important agricultural pests. This paper discusses how the occurrence of learning changes our understanding of the host selection behaviour of this polyphagous moth. Host preferences determined from previous laboratory studies may be vastly different from preferences exhibited by moths in the field, where the abundance of particular hosts may be more likely to determine host preference. In support of this prediction, a number of field studies have shown that the ‘attractiveness’ of different hosts for H. armigera oviposition may depend on the relative abundance of these host species. Insect learning may play a fundamental role in the design and application of present and future integrated pest management strategies such as the use of host volatiles, trap crops and resistant crop varieties for monitoring and controlling this important pest species
Resumo:
The research study discussed in the paper investigated the adsorption/desorption behaviour of heavy metals commonly deposited on urban road surfaces, namely, Zn, Cu, Cr and Pb for different particle size ranges of solids. The study outcomes, based on field studies and batch experiments confirmed that road deposited solids particles contain a significantly high amount of vacant charge sites with the potential to adsorb additional heavy metals. Kinetic studies and adsorption experiments indicated that Cr is the most preferred metal element to associate with solids due to the relatively high electro negativity and high charge density of trivalent cation (Cr3+). However, the relatively low availability of Cr in the urban road environment could influence this behaviour. Comparing total adsorbed metals present in solids particles, it was found that Zn has the highest capacity for adsorption to solids. Desorption experiments confirmed that a low concentration of Cu, Cr and Pb in solids was present in water-soluble and exchangeable form, whilst a significant fraction of adsorbed Zn has a high likelihood of being released back into solution. Among heavy metals, Zn is considered to be the most commonly available metal among road surface pollutants.
Resumo:
The existing literature shows driving speed significantly affects levels of safety, emissions, and stress in driving. In addition, drivers who feel tense when driving have been found to drive more slowly than others. These findings were mostly obtained from crash data analyses or field studies, and less is known regarding driver perceptions of the extent to which reducing their driving speed would improve road safety, reduce their car’s emissions, and reduce stress and road rage. This paper uses ordered probit regression models to analyse responses from 3538 Queensland drivers who completed an online RACQ survey. Drivers most strongly agreed that reducing their driving speed would improve road safety, less strongly agreed that reducing their driving speed would reduce their car’s emissions and least strongly agreed that reducing their driving speed would reduce stress and road rage. Younger drivers less strongly agreed that these benefits would occur than older drivers. Drivers of automatic cars and those who are bicycle commuters agreed more to these benefits than other drivers. Female drivers agreed more strongly than males on improving safety and reducing stress and road rage. Type of fuel used, engine size, driving experience, and distance driven per week were also found to be associated with driver perceptions, although these were not found to be significant in all of the regression models. The findings from this study may help in developing targeted training or educational measures to improve drivers’ willingness to reduce their driving speed.
Resumo:
Aerosol mass spectrometers (AMS) are powerful tools in the analysis of the chemical composition of airborne particles, particularly organic aerosols which are gaining increasing attention. However, the advantages of AMS in providing on-line data can be outweighed by the difficulties involved in its use in field measurements at multiple sites. In contrast to the on-line measurement by AMS, a method which involves sample collection on filters followed by subsequent analysis by AMS could significantly broaden the scope of AMS application. We report the application of such an approach to field studies at multiple sites. An AMS was deployed at 5 urban schools to determine the sources of the organic aerosols at the schools directly. PM1 aerosols were also collected on filters at these and 20 other urban schools. The filters were extracted with water and the extract run through a nebulizer to generate the aerosols, which were analysed by an AMS. The mass spectra from the samples collected on filters at the 5 schools were found to have excellent correlations with those obtained directly by AMS, with r2 ranging from 0.89 to 0.98. Filter recoveries varied between the schools from 40 -115%, possibly indicating that this method provides qualitative rather than quantitative information. The stability of the organic aerosols on Teflon filters was demonstrated by analysing samples stored for up to two years. Application of the procedure to the remaining 20 schools showed that secondary organic aerosols were the main source of aerosols at the majority of the schools. Overall, this procedure provides accurate representation of the mass spectra of ambient organic aerosols and could facilitate rapid data acquisition at multiple sites where AMS could not be deployed for logistical reasons.
Resumo:
In this paper we will examine passenger actions and activities at the security screening points of Australian domestic and international airports. Our findings and analysis provide a more complete understanding of the current airport passenger security screening experience. Data in this paper is comprised of field studies conducted at two Australian airports, one domestic and one international. Video data was collected by cameras situated either side of the security screening point. A total of one hundred and ninety-six passengers were observed. Two methods of analysis are used. First, the activities of passengers are coded and analysed to reveal the common activities at domestic and international security regimes and between quiet and busy periods. Second, observation of passenger activities is used to reveal uncommon aspects. The results show that passengers do more at security screening that being passively scanned. Passengers queue, unpack the required items from their bags and from their pockets, walk through the metal-detector, re-pack and occasionally return to be re-screened. For each of these activities, passengers must understand the procedures at the security screening point and must co-ordinate various actions and objects in time and space. Through this coordination passengers are active participants in making the security checkpoint function – they are co-producers of the security screening process.
Resumo:
Robotics has created opportunities for educators to teach concepts across Science, Technology, Engineering, and Mathematics (STEM). This is one of the reasons robotics is becoming increasingly common in primary and secondary classrooms in Australia. To enable pre-service teachers to design engaging STEM activities that incorporate these technologies, robotics is part of the teaching program in the primary education degree at Queensland University of Technology (QUT). A number of pre-service teachers also choose to extend their abilities by implementing robotics activities on field studies, in schools on a voluntary basis, and in outreach activities such as the Robotics@QUT project. The Robotics@QUT project is a support network developed to build professional knowledge and capacity of classroom teachers in schools from a low SES area, engaging in robotics-based STEM activities. Professional Development (PD) workshops are provided to teachers in order to build their knowledge and confidence in implementing robotics activities in their classrooms, loan kits are provided, and pre-service teacher visits arranged to provide the teachers with on-going support. A key feature of the project is the partnerships developed between the teachers and the pre-service teachers involved in the project. The purpose of this study was to ascertain how the teachers in the project perceived the value of the PD workshops and the pre-service teachers’ involvement and what the benefits of the involvement in the project were for the pre-service teachers. Seventeen teachers completed a five-point (1-5) likert scale questionnaire regarding their involvement in the Robotics@QUT project. Teachers’ responses on the value of the project and the pre-service teacher support highlighted the benefits of the partnerships formed and provided insights into the value of the support provided by the pre-service teachers. This paper also describes one pre-service teacher’s experience with the project and the perceived benefits from being involved.
Resumo:
The visual and multidimensional representations like images and graphical structures related to biology provide great insights into understanding the complexities of different organisms. Especially, life scientists use different representations of molecular structures to answer biological questions and to better understand cellular processes. Combining results from two field studies, we explore the role of molecular structures in life scientists’ current work from a humanfactors perspective. Our main conclusion is that different representations of molecular structures, due to their visual nature, are important for supporting collaboration, constructing new knowledge and supporting scientists’ professional activities in general.
Resumo:
Analogy plays a central role in legal reasoning, yet how to analogize is poorly taught and poorly practiced. We all recognize when legal analogies are being made: when a law professor suggests a difficult hypothetical in class and a student tentatively guesses at the answer based on the cases she read the night before, when an attorney advises a client to settle because a previous case goes against him, or when a judge adopts one precedent over another on the basis that it better fits the present case. However, when it comes to explaining why certain analogies are compelling, persuasive, or better than the alternative, lawyers usually draw a blank. The purpose of this article is to provide a simple model that can be used to teach and to learn how analogy actually works, and what makes one analogy superior to a competing analogy. The model is drawn from a number of theories of analogy making in cognitive science. Cognitive science is the “long-term enterprise to understand the mind scientifically.” The field studies the mechanisms that are involved in cognitive processes like thinking, memory, learning, and recall; and one of its main foci has been on how people construct analogies. The lessons from cognitive science theories of analogy can be applied to legal analogies to give students and lawyers a better understanding of this fundamental process in legal reasoning.
Resumo:
Background Artemisinin-combination therapy is a highly effective treatment for uncomplicated falciparum malaria but parasite recrudescence has been commonly reported following artemisinin (ART) monotherapy. The dormancy recovery hypothesis has been proposed to explain this phenomenon, which is different from the slower parasite clearance times reported as the first evidence of the development of ART resistance. Methods In this study, an existing P. falciparum infection model is modified to incorporate the hypothesis of dormancy. Published in vitro data describing the characteristics of dormant parasites is used to explore whether dormancy alone could be responsible for the high recrudescence rates observed in field studies using monotherapy. Several treatment regimens and dormancy rates were simulated to investigate the rate of clinical and parasitological failure following treatment. Results The model output indicates that following a single treatment with ART parasitological and clinical failures occur in up to 77% and 67% of simulations, respectively. These rates rapidly decline with repeated treatment and are sensitive to the assumed dormancy rate. The simulated parasitological and clinical treatment failure rates after 3 and 7 days of treatment are comparable to those reported from several field trials. Conclusions Although further studies are required to confirm dormancy in vivo, this theoretical study adds support for the hypothesis, highlighting the potential role of this parasite sub-population in treatment failure following monotherapy and reinforcing the importance of using ART in combination with other anti-malarials.
Resumo:
Since its discovery in 1991, the bacterial periplasmic oxidative folding catalyst DsbA has been the focus of intense research. Early studies addressed why it is so oxidizing and how it is maintained in its less stable oxidized state. The crystal structure of Escherichia coli DsbA (EcDsbA) revealed that the oxidizing periplasmic enzyme is a distant evolutionary cousin of the reducing cytoplasmic enzyme thioredoxin. Recent significant developments have deepened our understanding of DsbA function, mechanism, and interactions: the structure of the partner membrane protein EcDsbB, including its complex with EcDsbA, proved a landmark in the field. Studies of DsbA machineries from bacteria other than E. coli K-12 have highlighted dramatic differences from the model organism, including a striking divergence in redox parameters and surface features. Several DsbA structures have provided the first clues to its interaction with substrates, and finally, evidence for a central role of DsbA in bacterial virulence has been demonstrated in a range of organisms. Here, we review current knowledge on DsbA, a bacterial periplasmic protein that introduces disulfide bonds into diverse substrate proteins and which may one day be the target of a new class of anti-virulence drugs to treat bacterial infection. Antioxid. Redox Signal. 14, 1729–1760.