169 resultados para Failure time data analysis
Resumo:
Objective: Examining the association between socioeconomic disadvantage and heat-related emergency department (ED) visits during heatwave periods in Brisbane, 2000–2008. Methods: Data from 10 public EDs were analysed using a generalised additive model for disease categories, age groups and gender. Results: Cumulative relative risks (RR) for non-external causes other than cardiovascular and respiratory diseases were 1.11 and 1.05 in most and least disadvantaged areas, respectively. The pattern persisted on lags 0–2. Elevated risks were observed for all age groups above 15 years in all areas. However, with RRs of 1.19–1.28, the 65–74 years age group in more disadvantaged areas stood out, compared with RR=1.08 in less disadvantaged areas. This pattern was observed on lag 0 but did not persist. The RRs for male presentations were 1.10 and 1.04 in most and less disadvantaged areas; for females, RR was 1.04 in less disadvantaged areas. This pattern persisted across lags 0–2. Conclusions: Heat-related ED visits increased during heatwaves. However, due to overlapping confidence intervals, variations across socioeconomic areas should be interpreted cautiously. Implications: ED data may be utilised for monitoring heat-related health impacts, particularly on the first day of heatwaves, to facilitate prompt interventions and targeted resource allocation.
Resumo:
Objective: In response to concerns about the health consequences of high-risk drinking by young people, the Australian Government increased the tax on pre-mixed alcoholic beverages ('alcopops') favoured by this demographic. We measured changes in admissions for alcohol-related harm to health throughout Queensland, before and after the tax increase in April 2008. Methods: We used data from the Queensland Trauma Register, Hospitals Admitted Patients Data Collection, and the Emergency Department Information System to calculate alcohol-related admission rates per 100,000 people, for 15 - 29 year-olds. We analysed data over 3 years (April 2006 - April 2009), using interrupted time-series analyses. This covered 2 years before, and 1 year after, the tax increase. We investigated both mental and behavioural consequences (via F10 codes), and intentional/unintentional injuries (S and T codes). Results: We fitted an auto-regressive integrated moving average (ARIMA) model, to test for any changes following the increased tax. There was no decrease in alcohol-related admissions in 15 - 29 year-olds. We found similar results for males and females, as well as definitions of alcohol-related harms that were narrow (F10 codes only) and broad (F10, S and T codes). Conclusions: The increased tax on 'alcopops' was not associated with any reduction in hospital admissions for alcohol-related harms in Queensland 15 - 29 year-olds.
Resumo:
Most real-life data analysis problems are difficult to solve using exact methods, due to the size of the datasets and the nature of the underlying mechanisms of the system under investigation. As datasets grow even larger, finding the balance between the quality of the approximation and the computing time of the heuristic becomes non-trivial. One solution is to consider parallel methods, and to use the increased computational power to perform a deeper exploration of the solution space in a similar time. It is, however, difficult to estimate a priori whether parallelisation will provide the expected improvement. In this paper we consider a well-known method, genetic algorithms, and evaluate on two distinct problem types the behaviour of the classic and parallel implementations.
Resumo:
Child sexual abuse is widespread and difficult to detect. To enhance case identification, many societies have enacted mandatory reporting laws requiring designated professionals, most often police, teachers, doctors and nurses, to report suspected cases to government child welfare agencies. Little research has explored the effects of introducing a reporting law on the number of reports made, and the outcomes of those reports. This study explored the impact of a new legislative mandatory reporting duty for child sexual abuse in the State of Western Australia over seven years. We analysed data about numbers and outcomes of reports by mandated reporters, for periods before the law (2006-08) and after the law (2009-12). Results indicate that the number of reports by mandated reporters of suspected child sexual abuse increased by a factor of 3.7, from an annual mean of 662 in the three year pre-law period to 2448 in the four year post-law period. The increase in the first two post-law years was contextually and statistically significant. Report numbers stabilised in 2010-12, at one report per 210 children. The number of investigated reports increased threefold, from an annual mean of 451 in the pre-law period to 1363 in the post-law period. Significant decline in the proportion of mandated reports that were investigated in the first two post-law years suggested the new level of reporting and investigative need exceeded what was anticipated. However, a subsequent significant increase restored the pre-law proportion, suggesting systemic adaptive capacity. The number of substantiated investigations doubled, from an annual mean of 160 in the pre-law period to 327 in the post-law period, indicating twice as many sexually abused children were being identified.
The Optimal Smoothing of the Wigner-Ville Distribution for Real-Life Signals Time-Frequency Analysis
Resumo:
This project, as part of a broader Sustainable Sub-divisions research agenda, addresses the role of natural ventilation in reducing the use of energy required to cool dwellings
Resumo:
Modern Engineering Asset Management (EAM) requires the accurate assessment of current and the prediction of future asset health condition. Suitable mathematical models that are capable of predicting Time-to-Failure (TTF) and the probability of failure in future time are essential. In traditional reliability models, the lifetime of assets is estimated using failure time data. However, in most real-life situations and industry applications, the lifetime of assets is influenced by different risk factors, which are called covariates. The fundamental notion in reliability theory is the failure time of a system and its covariates. These covariates change stochastically and may influence and/or indicate the failure time. Research shows that many statistical models have been developed to estimate the hazard of assets or individuals with covariates. An extensive amount of literature on hazard models with covariates (also termed covariate models), including theory and practical applications, has emerged. This paper is a state-of-the-art review of the existing literature on these covariate models in both the reliability and biomedical fields. One of the major purposes of this expository paper is to synthesise these models from both industrial reliability and biomedical fields and then contextually group them into non-parametric and semi-parametric models. Comments on their merits and limitations are also presented. Another main purpose of this paper is to comprehensively review and summarise the current research on the development of the covariate models so as to facilitate the application of more covariate modelling techniques into prognostics and asset health management.
Resumo:
This report provides an introduction to our analyses of secondary data with respect to violent acts and incidents relating to males living in rural settings in Australia. It clarifies important aspects of our overall approach primarily by concentrating on three elements that required early scoping and resolution. Firstly, a wide and inclusive view of violence which encompasses measures of violent acts and incidents and also data identifying risk taking behaviour and the consequences of violence is outlined and justified. Secondly, the classification used to make comparisons between the city and the bush together with associated caveats is outlined. The third element discussed is in relation to national injury data. Additional commentary resulting from exploration, examination and analyses of secondary data is published online in five subsequent reports in this series.