34 resultados para Experimental treatment
Resumo:
In this article, we investigate experimentally whether people search optimally and how price promotions influence search behaviour. We implement a sequential search task with exogenous price dispersion in a baseline treatment and introduce discounts in two experimental treatments. We find that search behaviour is roughly consistent with optimal search but also observe some discount biases. If subjects do not know in advance where discounts are offered, the purchase probability is increased by 19 percentage points in shops with discounts, even after controlling for the benefit of the discount and for risk preferences. If consumers know in advance where discounts are given, then the bias is only weakly significant and much smaller (7 percentage points).
Resumo:
Introduction: Apoptosis is the final destiny of many cells in the body, though this process has been observed in some pathological processes. One of these pathological processes is femoral head non-traumatic osteonecrosis. Among many pro/anti-apoptotic factors, nitric oxide has recently been an area of further interest. Osteocyte apoptosis and its relation to pro-apoptotic action invite further research, and the inducible form of nitric oxide synthase (iNOS)—which produces a high concentration of nitric oxide—has been flagged. The aim of this study was to investigate the effect of hyperbaric oxygen (HBO) and inducible NOS suppressor (Aminoguanidine) in prevention of femoral head osteonecrosis in an experimental model of osteonecrosis in spontaneous hypertensive rats (SHRs). Methods: After animal ethic approval 34 SHR rats were divided into four groups. Ten rats were allocated to the control group without any treatment, and eight rats were allocated to three treatment groups namely: HBO, Aminoguanidine (AMG), and the combination of HBO and AMG treatments (HBO+AMG). The HBO group received 250 kPa of oxygen via hyperbaric chamber for 30 days started at their 5th week of life; the AMG group received 1mg/ml of AMG in drinking water from the fifth week till the 17th week of life; and the last group received a combination of these treatments. Rats were sacrificed at the end of the 17th week of life and both femurs were analysed for evidence of osteonecrosis using Micro CT scan and H&E staining. Also, osteocyte apoptosis and the presence of two different forms of NOS (inducible (iNOS) and endothelial (eNOS)) were analysed by immunostaining and apoptosis staining (Hoechst and TUNEL). Results: Bone morphology of metaphyseal and epiphyseal area of all rats were investigated and analysed. Micro CT findings revealed significantly higher mean fractional trabecular bone volume (FBV) of metaphyseal area in untreated SHRs compared with all other treatments (HBO, P<0.05, HBO+AMG, P<0.005, and AMG P<0.001). Bone surface to volume ratio also significantly increased with HBO+AMG and AMG treatments when compared with the control group (18.7 Vs 20.8, P<0.05, and 18.7 Vs 21.1, P<0.05). Epiphyseal mean FBV did not change significantly among groups. In the metaphyseal area, trabecular thickness and numbers significantly decreased with AMG treatment, while trabecular separation significantly increased with both AMG and HBO+AMG treatment. Histological ratio of no ossification and osteonecrosis was 37.5%, 43.7%, 18.7% and 6.2% of control, HBO, HBO+AMG and AMG groups respectively with only significant difference observed between HBO and AMG treatment (P<0.01). High concentration of iNOS was observed in the region of osteonecrosis while there was no evidence of eNOS activity around that region. In comparison with the control group, the ratio of osteocyte apoptosis significantly reduced in AMG treatment (P<0.005). We also observed significantly fewer apoptotic osteocytes in AMG group comparing with HBO treatment (P<0.05). Conclusion: None of our treatments prevents osteonecrosis at the histological or micro CT scan level. High concentration of iNOS in the region of osteonecrosis and significant reduction of osteocyte apoptosis with AMG treatment were supportive of iNOS modulating osteocyte apoptosis in SHRs.
Resumo:
In thermal deep-dermal burns, surgical debridement is normally used in conjunction with skin grafting or skin substitutes and debridement alone as a burn treatment is not usually practiced. The current study addresses whether or not debridement alone would enhance burn wound healing on small deep-dermal-partial thickness burns. This was a prospective and blinded experimental trial using a porcine deep-dermal-partial thickness burn model. Four burns, approximately 50 cm(2) in size, were created on each of eight pigs. Two burns from each pig were immediately surgically debrided and the other two were not debrided as the internal control. Hydrate gel together with paraffin gauze were used to cover the burns for four pigs and silver dressings for the other four. Clinical assessment of wound healing was conducted over a 6-week period. Skin samples were collected at the end of the experiment and histopathological evaluation was performed. The results show thinner scar formation and lower scar height in the debrided compared with nondebrided wounds in the hydrate gel/paraffin gauze groups. There were no statistically significant differences in wound healing assessment between the debrided and nondebrided wounds dressed with silver dressings. This study provides supporting evidence that immediate debridement with an appropriate dressing and without skin grafting may promote wound healing, suggesting its potential benefit for clinical patients.
Resumo:
Computational models represent a highly suitable framework, not only for testing biological hypotheses and generating new ones but also for optimising experimental strategies. As one surveys the literature devoted to cancer modelling, it is obvious that immense progress has been made in applying simulation techniques to the study of cancer biology, although the full impact has yet to be realised. For example, there are excellent models to describe cancer incidence rates or factors for early disease detection, but these predictions are unable to explain the functional and molecular changes that are associated with tumour progression. In addition, it is crucial that interactions between mechanical effects, and intracellular and intercellular signalling are incorporated in order to understand cancer growth, its interaction with the extracellular microenvironment and invasion of secondary sites. There is a compelling need to tailor new, physiologically relevant in silico models that are specialised for particular types of cancer, such as ovarian cancer owing to its unique route of metastasis, which are capable of investigating anti-cancer therapies, and generating both qualitative and quantitative predictions. This Commentary will focus on how computational simulation approaches can advance our understanding of ovarian cancer progression and treatment, in particular, with the help of multicellular cancer spheroids, and thus, can inform biological hypothesis and experimental design.
Resumo:
The present study focused on simulating a trajectory point towards the end of the first experimental heatshield of the FIRE II vehicle, at a total flight time of 1639.53s. Scale replicas were sized according to binary scaling and instrumented with thermocouples for testing in the X1 expansion tube, located at The University of Queensland. Correlation of flight to experimental data was achieved through the separation, and independent treatment of the heat modes. Preliminary investigation indicates that the absolute value of radiant surface flux is conserved between two binary scaled models, whereas convective heat transfer increases with the length scale. This difference in the scaling techniques result in the overall contribution of radiative heat transfer diminishing to less than 1% in expansion tubes from a flight value of approximately 9-17%. From empirical correlation's it has been shown that the St √Re number decreases, under special circumstances, in expansion tubes by the percentage radiation present on the flight vehicle. Results obtained in this study give a strong indication that the relative radiative heat transfer contribution in the expansion tube tests is less than that in flight, supporting the analysis that the absolute value remains constant with binary scaling.
Resumo:
We investigated the effects of the matrix metalloproteinase 13 (MMP13)-selective inhibitor, 5-(4-{4-[4-(4-fluorophenyl)-1,3-oxazol-2-yl]phenoxy}phenoxy)-5-(2-methoxyethyl) pyrimidine-2,4,6(1H,3H,5H)-trione (Cmpd-1), on the primary tumor growth and breast cancer-associated bone remodeling using xenograft and syngeneic mouse models. We used human breast cancer MDA-MB-231 cells inoculated into the mammary fat pad and left ventricle of BALB/c Nu/Nu mice, respectively, and spontaneously metastasizing 4T1.2-Luc mouse mammary cells inoculated into mammary fat pad of BALB/c mice. In a prevention setting, treatment with Cmpd-1 markedly delayed the growth of primary tumors in both models, and reduced the onset and severity of osteolytic lesions in the MDA-MB-231 intracardiac model. Intervention treatment with Cmpd-1 on established MDA-MB-231 primary tumors also significantly inhibited subsequent growth. In contrast, no effects of Cmpd-1 were observed on soft organ metastatic burden following intracardiac or mammary fat pad inoculations of MDA-MB-231 and 4T1.2-Luc cells respectively. MMP13 immunostaining of clinical primary breast tumors and experimental mice tumors revealed intra-tumoral and stromal expression in most tumors, and vasculature expression in all. MMP13 was also detected in osteoblasts in clinical samples of breast-to-bone metastases. The data suggest that MMP13-selective inhibitors, which lack musculoskeletal side effects, may have therapeutic potential both in primary breast cancer and cancer-induced bone osteolysis.
Resumo:
As for many other cancers, metastasis is the leading cause of death of patients with ovarian cancer. Vigorous basic and clinical research is being performed to initiate more efficacious treatment strategies to improve the poor outcome of women with this cancer. Current treatment for ovarian cancer includes advanced cyto-reductive surgery and traditional platinum and taxane combined chemotherapy. Clinical trials using novel cytotoxic reagents and tyrosine kinase inhibitors have also been progressing. In parallel, the application of robust unbiased high throughput research platforms using transcriptomic and proteomic approaches has identified that not only individual cell signalling pathways, but a network of molecular pathways, play an important role in the biology of ovarian cancer. Furthermore, intensive genomic and epigenetic analyses have also revealed single nucleotide polymorphisms associated with risk and/or aetiology of this cancer including patient response to treatment. Taken together, these approaches, that are advancing our understanding, will have an impact on the generation of new therapeutic approaches and strategies for improving the outcome and quality of life of patients with ovarian cancer in the near future.
Resumo:
The effects of a range of different sublethal salinities were assessed on physiological processes and growth performance in the freshwater ‘tra’ catfish (Pangasianodon hypophthalmus) juveniles over an 8-week experiment. Fish were distributed randomly among 6 salinity treatments [2, 6, 10, 14 and 18 g/L of salinity and a control (0 g/L)] with a subsequent 13-day period of acclimation. Low salinity conditions from 2 to 10 g/L provided optimal conditions with high survival and good growth performance, while 0 g/L and salinities[14 g/L gave poorer survival rates (p\0.05). Salinity levels from freshwater to 10 g/L did not have any negative effects on fish weight gain, daily weight gain, or specific growth rate. Food conversion ratio, however, was lowest in the control treatment (p\0.05) and highest at the maximum salinities tested (18 g/L treatment). Cortisol levels were elevated in the 14 and 18 g/L treatments after 6 h and reached a peak after 24-h exposure, and this also led to increases in plasma glucose concentration. After 14 days, surviving fish in all treatments appeared to have acclimated to their respective conditions with cortisol levels remaining under 5 ng/ mL with glucose concentrations stable. Tra catfish do not appear to be efficient osmoregulators when salinity levels exceed 10 g/L, and at raised salinity levels, growth performance is compromised. In general, results of this study confirm that providing culture environments in the Mekong River Basin do not exceed 10 g/L salinity and that cultured tra catfish can continue to perform well.
Resumo:
Stormwater bioretention basins are subjected to spontaneous intermittent wetting and drying, unlike water treatment filter systems that are subjected to continuous feed. Drinking water filters when constructed new or after back-wash, are subjected to a phase of stabilization. Experiments show that bioretention basins are similarly impacted by intermittent wetting and drying. The common parameter monitored in the stabilisation of filters is the concentration of total solids in the outflow. Filter media in bioretention basins however, consists of a mix of particulate organic matter and fine sand. Organic carbon and solids are therefore needed to be monitored. Four Perspex bioretention filter columns of 94 mm (ID) were packed with a filter layer (800 mm), transition layer and a gravel layer and operated with synthetic stormwater in the laboratory. The filter layer contained 8% organic material by weight. A free board of 350 mm provided detention storage and head to facilitate infiltration. Synthetic stormwater was prepared by adding NH4NO3 (ammonium nitrate) and C2H5NO2 (glycine) and a mixture of kaolinite and montmorillonite clay, to tapwater. The columns were fed with synthetic stormwater with different Antecedent Dry Days (ADD) (0 – 25 day) and constant inflow concentration (2 ppm: nitrate-nitrogen, 1.5 ppm: ammonium-nitrogen, 2.5 ppm: organic-nitrogen 100 ppm: total suspended solids and 7 ppm: organic carbon) at a feed rate of 100mL.min (85.7cm/h). Samples were collected from the outflow at different time intervals between 2 – 150 min from the start of outflow and were tested for Total Suspended Solids (TSS) and Total Organic Carbon (TOC). Both TSS and TOC concentrations in the outflow were observed to be much higher than the concentration of both the parameters in the inflow during the stabilisation period indicating a phase of wash-off (first flush) which lasted for approximately 30 min for both parameters at the beginning of each storm event. The wash-off of TSS and TOC were found to be highly variable depending on the age of the filter and the number of antecedent dry days. The duration of stabilisation phase in the experiments is significant compared with many of the stormwater events. A computational analysis on total mass of each pollutant further affirmed the significance of the first flush of an event on removal of these pollutants. Therefore, the kinetics of the first flush in the stabilisation phase needs to be considered in the performance analysis of the systems.
Resumo:
The high acute toxicity of acrylonitrile may be a result of its intrinsic biological reactivity or of its metabolite cyanide. Intravenous N-acetylcysteine has been recommended for treatment of accidental intoxications in acrylonitrile workers, but such recommendations vary internationally. Acrylonitrile is metabolized in humans and experimental animals via two competing pathways; the glutathione-dependent pathway is considered to represent an avenue of detoxication whilst the oxidative pathway leads to a genotoxic epoxide, cyanoethylene oxide, and to elimination of cyanide. Cases of acute acrylonitrile overexposure or intoxication have occurred within persons having industrial contact with acrylonitrile; the route of exposure was by inhalation and/or by skin contact. The combined observations lead to the conclusion of a much higher impact of the oxidative metabolism of acrylonitrile in humans than in rodents. This is confirmed by differences in the clinical picture of acute life-threatening intoxications in both species, as well as by differential efficacies of antidotes. A combination of N-acetylcysteine with sodium thiosulfate seems an appropriate measure for antidote therapy of acute acrylonitrile intoxications. Clinical observations also highlight the practical importance of human individual susceptibility differences. Furthermore, differential adduct monitoring, assessing protein adducts with different rates of decay, enables the development of more elaborated biological monitoring strategies for the surveillance of workers with potential acrylonitrile contact.
Resumo:
Background Chronic kidney disease is a global public health problem of increasing prevalence. There are five stages of kidney disease, with Stage 5 indicating end stage kidney disease (ESKD) requiring dialysis or death will eventually occur. Over the last two decades there have been increasing numbers of people commencing dialysis. A majority of this increase has occurred in the population of people who are 65 years and over. With the older population it is difficult to determine at times whether dialysis will provide any benefit over non-dialysis management. The poor prognosis for the population over 65 years raises issues around management of ESKD in this population. It is therefore important to review any research that has been undertaken in this area which compares outcomes of the older ESKD population who have commenced dialysis with those who have received non-dialysis management. Objective The primary objective was to assess the effect of dialysis compared with non-dialysis management for the population of 65 years and over with ESKD. Inclusion criteria Types of participants This review considered studies that included participants who were 65 years and older. These participants needed to have been diagnosed with ESKD for greater than three months and also be either receiving renal replacement therapy (RRT) (hemodialysis [HD] or peritoneal dialysis [PD]) or non-dialysis management. The settings for the studies included the home, self-care centre, satellite centre, hospital, hospice or nursing home. Types of intervention(s)/phenomena of interest This review considered studies where the intervention was RRT (HD or PD) for the participants with ESKD. There was no restriction on frequency of RRT or length of time the participant received RRT. The comparator was participants who were not undergoing RRT. Types of studies This review considered both experimental and epidemiological study designs including randomized controlled trials, non-randomized controlled trials, quasi-experimental, before and after studies, prospective and retrospective cohort studies, case control studies and analytical cross sectional studies. This review also considered descriptive epidemiological study designs including case series, individual case reports and descriptive cross sectional studies for inclusion. This review included any of the following primary and secondary outcome measures: •Primary outcome – survival measures •Secondary outcomes – functional performance score (e.g. Karnofsky Performance score) •Symptoms and severity of end stage kidney disease •Hospital admissions •Health related quality of life (e.g. KDQOL, SF36 and HRQOL) •Comorbidities (e.g. Charlson Comorbidity index).
Resumo:
Pebble matrix filtration (PMF) is a water treatment technology that can remove suspended solids in highly turbid surface water during heavy storms. PMF typically uses sand and natural pebbles as filter media. Hand-made clay pebbles (balls) can be used as alternatives to natural pebbles in PMF treatment plants, where natural pebbles are not readily available. Since the high turbidity is a seasonal problem that occurs during heavy rains, the use of newly developed composite clay balls instead of pure clay balls have the advantage of removing other pollutants such as natural organic matter (NOM) during other times. Only the strength properties of composite clay balls are described here as the pollutant removal is beyond the scope of this paper. These new composite clay balls must be able to withstand dead and live loads under dry and saturated conditions in a filter assembly. Absence of a standard ball preparation process and expected strength properties of composite clay balls were the main reasons behind the present study. Five different raw materials from industry wastes: Red Mud (RM), Water Treatment Alum Sludge (S), Shredded Paper (SP), Saw Dust (SD), and Sugar Mulch (SM) were added to common clay brick mix (BM) in different proportions. In an effort to minimize costs, in this study clay balls were fired to 1100 0C at a local brick factory together with their bricks. A comprehensive experimental program was performed to evaluate crushing strength of composite hand-made clay balls, using uniaxial compression test to establish the best material combination on the basis of strength properties for designing sustainable filter media for water treatment plants. Performance at both construction and operating stages were considered by analyzing both strength properties under fully dry conditions and strength degradation after saturation in a water bath. The BM-75% as the main component produced optimum combination in terms of workability and strength. With the material combination of BM-75% and additives-25%, the use of Red Mud and water treatment sludge as additives produced the highest and lowest strength of composite clay balls, with a failure load of 5.4 kN and 1.4 kN respectively. However, this lower value of 1.4 kN is much higher than the effective load on each clay ball of 0.04 kN in a typical filter assembly (safety factor of 35), therefore, can still be used as a suitable filter material for enhanced pollutant removal.
Resumo:
Increased permeability of blood vessels is an indicator for various injuries and diseases, including multiple sclerosis (MS), of the central nervous system. Nanoparticles have the potential to deliver drugs locally to sites of tissue damage, reducing the drug administered and limiting associated side effects, but efficient accumulation still remains a challenge. We developed peptide-functionalized polymeric nanoparticles to target blood clots and the extracellular matrix molecule nidogen, which are associated with areas of tissue damage. Using the induction of experimental autoimmune encephalomyelitis in rats to provide a model of MS associated with tissue damage and blood vessel lesions, all targeted nanoparticles were delivered systemically. In vivo data demonstrates enhanced accumulation of peptide functionalized nanoparticles at the injury site compared to scrambled and naive controls, particularly for nanoparticles functionalized to target fibrin clots. This suggests that further investigations with drug laden, peptide functionalized nanoparticles might be of particular interest in the development of treatment strategies for MS.
Resumo:
Purpose To test the effectiveness of static and dynamic orthoses using them as an exclusive treatment for proximal interphalangeal (PIP) joint flexion contracture compared with other hand therapy conservative treatments described in the literature. Methods 60 patients who used orthoses were compared with a control group that received other hand therapy treatments. Clinical assessments were measured before the experiment and 3 months after and included active PIP joint extension and function. Results A significant improvement in the extension active range of motion at the PIP joint in the second measurement was found in both groups, but it was significantly greater in the experimental group. Improvement in function (Disabilities of the Arm, Shoulder, and Hand score) between the first and second assessment was similar in the control and experimental groups. Conclusions Using night progressive static and daily dynamic orthoses as an exclusive treatment during the proliferative phase led to significant improvements in the PIP joint active extension, but the improvement did not correlate with increased function as perceived by the patient.
Resumo:
Common to many types of water and wastewater is the presence of sodium ions which can be removed by desalination technologies, such as reverse osmosis and ion exchange. The focus of this investigation was ion exchange as it potentially offered several advantages compared to competing methods. The equilibrium and column behaviour of a strong acid cation (SAC) resin was examined for the removal of sodium ions from aqueous sodium chloride solutions of varying normality as well as a coal seam gas water sample. The influence of the bottle-point method to generate the sorption isotherms was evaluated and data interpreted with the Langmuir Vageler, Competitive Langmuir, Freundlich, and Dubinin-Astakhov models. With the constant concentration bottle point method, the predicted maximum exchange levels of sodium ions on the resin ranged from 61.7 to 67.5 g Na/kg resin. The general trend was that the lower the initial concentration of sodium ions in the solution, the lower the maximum capacity of the resin for sodium ions. In contrast, the constant mass bottle point method was found to be problematic in that the isotherm profiles may not be complete, if experimental parameters were not chosen carefully. Column studies supported the observations of the equilibrium studies, with maximum sodium loading of ca. 62.9 g Na/kg resin measured, which was in excellent agreement with the predictions of the data from the constant concentration bottle point method. Equilibria involving coal seam gas water were more complex due to the presence of sodium bicarbonate in solution, albeit the maximum loading capacity for sodium ions was in agreement with the results from the more simple sodium chloride solutions.