94 resultados para Endocrine disrupter
Resumo:
Background: There are innumerable diabetes studies that have investigated associations between risk factors, protective factors, and health outcomes; however, these individual predictors are part of a complex network of interacting forces. Moreover, there is little awareness about resilience or its importance in chronic disease in adulthood, especially diabetes. Thus, this is the first study to: (1) extensively investigate the relationships among a host of predictors and multiple adaptive outcomes; and (2) conceptualise a resilience model among people with diabetes. Methods: This cross-sectional study was divided into two research studies. Study One was to translate two diabetes-specific instruments (Problem Areas In Diabetes, PAID; Diabetes Coping Measure, DCM) into a Chinese version and to examine their psychometric properties for use in Study Two in a convenience sample of 205 outpatients with type 2 diabetes. In Study Two, an integrated theoretical model is developed and evaluated using the structural equation modelling (SEM) technique. A self-administered questionnaire was completed by 345 people with type 2 diabetes from the endocrine outpatient departments of three hospitals in Taiwan. Results: Confirmatory factor analyses confirmed a one-factor structure of the PAID-C which was similar to the original version of the PAID. Strong content validity of the PAID-C was demonstrated. The PAID-C was associated with HbA1c and diabetes self-care behaviours, confirming satisfactory criterion validity. There was a moderate relationship between the PAID-C and the Perceived Stress Scale, supporting satisfactory convergent validity. The PAID-C also demonstrated satisfactory stability and high internal consistency. A four-factor structure and strong content validity of the DCM-C was confirmed. Criterion validity demonstrated that the DCM-C was significantly associated with HbA1c and diabetes self-care behaviours. There was a statistical correlation between the DCM-C and the Revised Ways of Coping Checklist, suggesting satisfactory convergent validity. Test-retest reliability demonstrated satisfactory stability of the DCM-C. The total scale of the DCM-C showed adequate internal consistency. Age, duration of diabetes, diabetes symptoms, diabetes distress, physical activity, coping strategies, and social support were the most consistent factors associated with adaptive outcomes in adults with diabetes. Resilience was positively associated with coping strategies, social support, health-related quality of life, and diabetes self-care behaviours. Results of the structural equation modelling revealed protective factors had a significant direct effect on adaptive outcomes; however, the construct of risk factors was not significantly related to adaptive outcomes. Moreover, resilience can moderate the relationships among protective factors and adaptive outcomes, but there were no interaction effects of risk factors and resilience on adaptive outcomes. Conclusion: This study contributes to an understanding of how risk factors and protective factors work together to influence adaptive outcomes in blood sugar control, health-related quality of life, and diabetes self-care behaviours. Additionally, resilience is a positive personality characteristic and may be importantly involved in the adjustment process among people living with type 2 diabetes.
Resumo:
Purpose: To evaluate the psychometric properties of a Chinese version of the Diabetes Coping Measure (DCM-C) scale.----- Methods: A self-administered questionnaire was completed by 205 people with type 2 diabetes from the endocrine outpatient departments of three hospitals in Taiwan. Confirmatory factor analysis, criterion validity, and internal consistency reliability were conducted to evaluate the psychometric properties of the DCM-C.----- Findings: Confirmatory factor analysis confirmed a four-factor structure (χ2 /df ratio=1.351, GFI=.904, CFI=.902, RMSEA=.041). The DCM-C was significantly associated with HbA1c and diabetes self-care behaviors. Internal consistency reliability of the total DCM-C scale was .74. Cronbach’s alpha coefficients for each subscale of the DCM-C ranged from .37 (tackling spirit) to .66 (diabetes integration).----- Conclusions: The DCM-C demonstrated satisfactory reliability and validity to determine the use of diabetes coping strategies. The tackling spirit dimension needs further refinement when applies this scale to Chinese populations with diabetes.----- Clinical Relevance: Healthcare providers who deal with Chinese people with diabetes can use the DCM-C to implement an early determination of diabetes coping strategies.
Resumo:
The androgen receptor (AR) is a ligand-activated transcription factor of the nuclear receptor superfamily that plays a critical role in male physiology and pathology. Activated by binding of the native androgens testosterone and 5-dihydrotestosterone, the AR regulates transcription of genes involved in the development and maintenance of male phenotype and male reproductive function as well as other tissues such as bone and muscle. Deregulation of AR signaling can cause a diverse range of clinical conditions, including the X-linked androgen insensitivity syndrome, a form of motor neuron disease known as Kennedy’s disease, and male infertility. In addition, there is now compelling evidence that the AR is involved in all stages of prostate tumorigenesis including initiation, progression, and treatment resistance. To better understand the role of AR signaling in the pathogenesis of these conditions, it is important to have a comprehensive understanding of the key determinants of AR structure and function. Binding of androgens to the AR induces receptor dimerization, facilitating DNA binding and the recruitment of cofactors and transcriptional machinery to regulate expression of target genes. Various models of dimerization have been described for the AR, the most well characterized interaction being DNA-binding domain- mediated dimerization, which is essential for the AR to bind DNA and regulate transcription. Additional AR interactions with potential to contribute to receptor dimerization include the intermolecular interaction between the AR amino terminal domain and ligand-binding domain known as the N-terminal/C-terminal interaction, and ligand-binding domain dimerization. In this review, we discuss each form of dimerization utilized by the AR to achieve transcriptional competence and highlight that dimerization through multiple domains is necessary for optimal AR signaling.
Resumo:
Context: The magnitude of exercise-induced weight loss depends on the extent of compensatory responses. An increase in energy intake is likely to result from changes in the appetite control system toward an orexigenic environment; however, few studies have measured how exercise impacts on both orexigenic and anorexigenic peptides. ---------- Objective: The aim of the study was to investigate the effects of medium-term exercise on fasting/postprandial levels of appetite-related hormones and subjective appetite sensations in overweight/obese individuals. ---------- Design and Setting: We conducted a longitudinal study in a university research center. ---------- Participants and Intervention: Twenty-two sedentary overweight/obese individuals (age, 36.9 ± 8.3 yr; body mass index, 31.3 ± 3.3 kg/m2) took part in a 12-wk supervised exercise programme (five times per week, 75% maximal heart rate) and were requested not to change their food intake during the study. ---------- Main Outcome Measures: We measured changes in body weight and fasting/postprandial plasma levels of glucose, insulin, total ghrelin, acylated ghrelin (AG), peptide YY, and glucagon-like peptide-1 and feelings of appetite. ---------- Results: Exercise resulted in a significant reduction in body weight and fasting insulin and an increase in AG plasma levels and fasting hunger sensations. A significant reduction in postprandial insulin plasma levels and a tendency toward an increase in the delayed release of glucagon-like peptide-1 (90–180 min) were also observed after exercise, as well as a significant increase (127%) in the suppression of AG postprandially. ---------- Conclusions: Exercise-induced weight loss is associated with physiological and biopsychological changes toward an increased drive to eat in the fasting state. However, this seems to be balanced by an improved satiety response to a meal and improved sensitivity of the appetite control system.
Resumo:
Obesity represents a major health, social and economic burden to many developing and Westernized communities, with the prevalence increasing at a rate exceeding almost all other medical conditions. Despite major recent advances in our understanding of adipose tissue metabolism and dynamics, we still have limited insight into the regulation of adipose tissue mass in humans. Any significant increase in adipose tissue mass requires proliferation and differentiation of precursor cells (preadipocytes) present in the stromo-vascular compartment of adipose tissue. These processes are very complex and an increasing number of growth factors and hormones have been shown to modulate the expression of genes involved in preadipocyte proliferation and differentiation. A number of transcription factors, including the C/EBP family and PP ARy, have been identified as integral to adipose tissue development and preadipocyte differentiation. Together PP ARy and C/EBPa regulate important events in the activation and maintenance of the terminally differentiated phenotype. The ability of PP ARy to increase transcription through its DNA recognition site is dependent on the binding of ligands. This suggests that an endogenous PP ARy ligand may be an important regulator of adipogenesis. Adipose tissue functions as both the major site of energy storage in the body and as an endocrine organ synthesizing and secreting a number of important molecules involved in regulation of energy balance. For optimum functioning therefore, adipose tissue requires extensive vascularization and previous studies have shown that growth of adipose tissue is preceded by development of a microvascular network. This suggests that paracrine interactions between constituent cells in adipose tissue may be involved in both new capillary formation and fat cell growth. To address this hypothesis the work in this project was aimed at (a) further development of a method for inducing preadipocyte differentiation in subcultured human cells; (b) establishing a method for simultaneous isolation and separate culture of both preadipocytes and microvascular endothelial cells from the same adipose tissue biopsies; (c) to determine, using conditioned medium and co-culture techniques, if endothelial cell-derived factors influence the proliferation and/or differentiation of human preadipocytes; and (d) commence characterization of factors that may be responsible for any observed paracrine effects on aspects of human adipogenesis. Major findings of these studies were as follows: (A) Inclusion of either linoleic acid (a long-chain fatty acid reported to be a naturally occurring ligand for PP ARy) or Rosiglitazone (a member of the thiazolidinedione class of insulin-sensitizing drugs and a synthetic PPARy ligand) in differentiation medium had markedly different effects on preadipocyte differentiation. These studies showed that human preadipocytes have the potential to accumulate triacylglycerol irrespective of their stage of biochemical differentiation, and that thiazolidinediones and fatty acids may exert their adipogenic and lipogenic effects via different biochemical pathways. It was concluded that Rosiglitazone is a more potent inducer of human preadipocyte differentiation than linoleic acid. (B) A method for isolation and culture of both endothelial cells and preadipocytes from the same adipose tissue biopsy was developed. Adipose-derived microvascular endothelial cells were found to produce factor/s, which enhance both proliferation and differentiation of human preadipocytes. (C) The adipogenic effects of microvascular endothelial cells can be mimicked by exposure of preadipocytes to members of the Fibroblast Growth Factor family, specifically ~-ECGF and FGF-1. (D) Co-culture of human preadipocytes with endothelial cells or exposure of preadipocytes to either ~-ECGF or FGF-1 were found to 'prime' human preadipocytes, during their proliferative phase of growth, for thiazolidinedione-induced differentiation. (E) FGF -1 was not found to be acting as a ligand for PP ARy in this system. Findings from this project represent a significant step forward in our understanding of factors involved in growth of human adipose tissue and may lead to the development of therapeutic strategies aimed at modifying the process. Such strategies would have potential clinical utility in the treatment of obesity and obesity related disorders such as Type II Diabetes.
Resumo:
Leukocytes are critical effectors of inflammation and tumor biology. Chemokine-like factors produced by such inflammatory sites are key mediators of tumor growth that activate leukocytic recruitment and tumor infiltration and suppress immune surveillance. Here we report that the endocrine peptide hormone, relaxin, is a regulator of leukocyte biology with properties important in recruitment to sites of inflammation. This study uses the human monocytic cell line THP-1 and normal human peripheral blood mononuclear cells to define a novel role for relaxin in regulation of leukocyte adhesion and migration. Our studies indicate that relaxin promotes adenylate cyclase activation, substrate adhesion, and migratory capacity of mononuclear leukocytes through a relaxin receptor LGR7-dependent mechanism. Relaxin-stimulated cAMP accumulation was observed to occur primarily in non-adherent cells. Relaxin stimulation results in increased substrate adhesion and increased migratory activity of leukocytes. In addition, relaxin-stimulated substrate adhesion resulted in enhanced chemotaxis to monocyte chemoattractant protein-1. These responses in THP-1 and peripheral blood mononuclear cells are relaxin dose-dependent and proportional to cAMP accumulation. We further demonstrate that LGR7 is critical for mediating these biological responses by use of RNA interference lentiviral short hairpin constructs. In summary, we provide evidence that relaxin is a novel leukocyte stimulatory agent with properties affecting adhesion and chemomigration
Disruption of androgen regulation in the prostate by the environmental contaminant hexachlorobenzene
Resumo:
Hexachlorobenzene (HCB) is a persistent environmental contaminant that has the potential to interfere with steroid hormone regulation. The prostate requires precise control by androgens to regulate its growth and function. To determine if HCB impacts androgen action in the prostate, we used a number of methods. Our in vitro cell-culture-based assay used a firefly luciferase reporter gene driven by an androgen-responsive promoter. In the presence of dihydrotestosterone, low concentrations (0.5-5 nM) of HCB increased the androgen-responsive production of firefly luciferase and high concentrations of HCB (> 10 microM) suppressed this transcriptional activity. Results from a binding assay showed no evidence of affinity between HCB and the androgen receptor. We also tested HCB for in vivo effects using transgenic mice in which the transgene was a prostate-specific, androgen-responsive promoter upstream of a chloramphenicol acetyl transferase (CAT) reporter gene. In 4-week-old mice, the proportion of dilated prostate acini, a marker of sexual maturity, increased in the low HCB dose group and decreased in the high HCB dose mice. In the 8-week-old mice, there was a significant decrease in both CAT activity and prostate weight upon exposure to 20 mg/kg/day HCB. Therefore, in vitro and in vivo data suggest that HCB weakly agonizes androgen action, and consequently, low levels of HCB enhanced androgen action but high levels of HCB interfered. Environmental contaminants have been implicated in the rising incidence of prostate cancer, and insight into the mechanisms of endocrine disruption will help to clarify their role.
Resumo:
Background: Factors that individually influence blood sugar control, health-related quality of life, and diabetes self-care behaviors have been widely investigated; however, most previous diabetes studies have not tested an integrated association between a series of factors and multiple health outcomes. ---------- Objectives: The purposes of this study are to identify risk factors and protective factors and to examine the impact of risk factors and protective factors on adaptive outcomes in people with type 2 diabetes.---------- Design: A descriptive correlational design was used to examine a theoretical model of risk factors, protective factors, and adaptive outcomes.---------- Settings: This study was conducted at the endocrine outpatient departments of three hospitals in Taiwan. Participants A convenience sample of 334 adults with type 2 diabetes aged 40 and over.---------- Methods: Data were collected by a self-reported questionnaire and physiological examination. Using the structural equation modeling technique, measurement and structural regression models were tested.---------- Results: Age and life events reflected the construct of risk factors. The construct of protective factors was explained by diabetes symptoms, coping strategy, and social support. The construct of adaptive outcomes comprised HbA1c, health-related quality of life, and self-care behaviors. Protective factors had a significant direct effect on adaptive outcomes (β = 0.68, p < 0.001); however, risk factors did not predict adaptive outcomes (β = − 0.48, p = 0.118).---------- Conclusions: Identifying and managing risk factors and protective factors are an integral part of diabetes care. This theoretical model provides a better understanding of how risk factors and protective factors work together to influence multiple adaptive outcomes in people living with type 2 diabetes.
Resumo:
An understanding of physical growth and maturation is relevant to many disciplines, including exercise and sport science, anthropology, human biology, medicine, psychology and education. Growth and maturation is governed by a complex interaction between genetic and environmental factors. There is increasing evidence that physical activity plays an important role in normal growth, development, health and well-being of children and youth, however, caution is required in the activity setting so that growth and maturation is not jeopardised. To appreciate the impact of physical activity and/or exercise on growth and maturation, a thorough understanding of the general principles of auxology is useful. Following an introduction to terminology, an overview of physical growth and development is provided in the context of morphological changes. Detailed information is provided regarding individual variability in growth and development along with sexual dimorphism. A small degree of sexual dimorphism exists at birth however striking differences develop during the pubertal years. Sexual dimorphism in body composition is largely regulated by endocrine factors with critical roles played by growth hormone and gonadal steroids.
Resumo:
Recent studies have demonstrated that IGF-I associates with VN through IGF-binding proteins (IGFBP) which in turn modulate IGF-stimulated biological functions such as cell proliferation, attachment and migration. Since IGFs play important roles in transformation and progression of breast tumours, we aimed to describe the effects of IGF-I:IGFBP:VN complexes on breast cell function and to dissect mechanisms underlying these responses. In this study we demonstrate that substrate-bound IGF-I:IGFBP:VN complexes are potent stimulators of MCF-7 breast cell survival, which is mediated by a transient activation of ERK/MAPK and sustained activation of PI3-K/AKT pathways. Furthermore, use of pharmacological inhibitors of the MAPK and PI3-K pathways confirms that both pathways are involved in IGF-I:IGFBP:VN complex-mediated increased cell survival. Microarray analysis of cells stimulated to migrate in response to IGF-I:IGFBP:VN complexes identified differential expression of genes with previously reported roles in migration, invasion and survival (Ephrin-B2, Sharp-2, Tissue-factor, Stratifin, PAI-1, IRS-1). These changes were not detected when the IGF-I analogue (\[L24]\[A31]-IGF-I), which fails to bind to the IGF-I receptor, was substituted; confirming the IGF-I-dependent differential expression of genes associated with enhanced cell migration. Taken together, these studies have established that IGF-I:IGFBP:VN complexes enhance breast cell migration and survival, processes central to facilitating metastasis. This study highlights the interdependence of ECM and growth factor interactions in biological functions critical for metastasis and identifies potential novel therapeutic targets directed at preventing breast cancer progression.
Resumo:
Ghrelin was first identified in 1999 by Kojima and colleagues (Kojima et al. 1999) as the natural ligand of an orphan G-protein coupled receptor, the Growth Hormone (GH) secretagogue receptor (GHS-R), which had been identified several years earlier through the actions of a growing number of synthetic growth hormone releasing peptides (GHRPs) and non-peptidyl GH secretagogues (Howard et al. 1996). Early studies, therefore, focussed on the actions of ghrelin as an important regulator of GH secretion. As a result Kojima et al (1999) designated this GH-releasing peptide, ghrelin (ghre is the Proto-Indo-European root of the word 'grow'). We now recognise that the functions of ghrelin extend well beyond its GH releasing actions and that it is a multi-functional peptide with both endocrine and autocrine/paracrine modes of action.