168 resultados para Differential pulse
Resumo:
In this article, we analyze the three-component reaction-diffusion system originally developed by Schenk et al. (PRL 78:3781–3784, 1997). The system consists of bistable activator-inhibitor equations with an additional inhibitor that diffuses more rapidly than the standard inhibitor (or recovery variable). It has been used by several authors as a prototype three-component system that generates rich pulse dynamics and interactions, and this richness is the main motivation for the analysis we present. We demonstrate the existence of stationary one-pulse and two-pulse solutions, and travelling one-pulse solutions, on the real line, and we determine the parameter regimes in which they exist. Also, for one-pulse solutions, we analyze various bifurcations, including the saddle-node bifurcation in which they are created, as well as the bifurcation from a stationary to a travelling pulse, which we show can be either subcritical or supercritical. For two-pulse solutions, we show that the third component is essential, since the reduced bistable two-component system does not support them. We also analyze the saddle-node bifurcation in which two-pulse solutions are created. The analytical method used to construct all of these pulse solutions is geometric singular perturbation theory, which allows us to show that these solutions lie in the transverse intersections of invariant manifolds in the phase space of the associated six-dimensional travelling wave system. Finally, as we illustrate with numerical simulations, these solutions form the backbone of the rich pulse dynamics this system exhibits, including pulse replication, pulse annihilation, breathing pulses, and pulse scattering, among others.
Resumo:
In this paper, a singularly perturbed ordinary differential equation with non-smooth data is considered. The numerical method is generated by means of a Petrov-Galerkin finite element method with the piecewise-exponential test function and the piecewise-linear trial function. At the discontinuous point of the coefficient, a special technique is used. The method is shown to be first-order accurate and singular perturbation parameter uniform convergence. Finally, numerical results are presented, which are in agreement with theoretical results.
Resumo:
Aijt-Sahalia (2002) introduced a method to estimate transitional probability densities of di®usion processes by means of Hermite expansions with coe±cients determined by means of Taylor series. This note describes a numerical procedure to ¯nd these coe±cients based on the calculation of moments. One advantage of this procedure is that it can be used e®ectively when the mathematical operations required to ¯nd closed-form expressions for these coe±cients are otherwise infeasible.
Resumo:
In this paper we propose an efficient authentication and integrity scheme to support DGPS corrections using the RTCM protocol, such that the identified vulnerabilities in DGPS are mitigated. The proposed scheme is based on the TESLA broadcast protocol with modifications that make it suitable for the bandwidth and processor constrained environment of marine DGPS.
Resumo:
Most corporate entrepreneurship studies have focused on either innovation, venturing or strategic renewal making comparison between the antecedents of all three aspects of corporate entrepreneurship difficult. Moreover, studies on corporate entrepreneurship hardly address organizational antecedents, while simultaneously managing and organizing CE and mainstream activities has been seen as a major challenge for incumbent firms. Our findings show that organizational ambidexterity has strong and differential effects on venturing, innovation and renewal. We find, for example, that innovation is affected by horizontal integration, while strategic renewal is significantly influenced by integration on top management team level.
Resumo:
The solution of linear ordinary differential equations (ODEs) is commonly taught in first year undergraduate mathematics classrooms, but the understanding of the concept of a solution is not always grasped by students until much later. Recognising what it is to be a solution of a linear ODE and how to postulate such solutions, without resorting to tables of solutions, is an important skill for students to carry with them to advanced studies in mathematics. In this study we describe a teaching and learning strategy that replaces the traditional algorithmic, transmission presentation style for solving ODEs with a constructive, discovery based approach where students employ their existing skills as a framework for constructing the solutions of first and second order linear ODEs. We elaborate on how the strategy was implemented and discuss the resulting impact on a first year undergraduate class. Finally we propose further improvements to the strategy as well as suggesting other topics which could be taught in a similar manner.
Resumo:
This study seeks to further delineate how organizational antecedents differentially influence the three components of corporate entrepreneurship: innovation, venturing or strategic renewal. We argue that structural differentiation may help organizations to maintain multiple and often conflicting demands of entrepreneurial and mainstream activities. Taking a social capital perspective, our study further examines two contingencies in the form of informal integration mechanisms (i.e. connectedness and TMT social integration). Our findings show structural differentiation has a positive effect on all three components of corporate entrepreneurship, yet the effect is moderated by integration mechanisms. Interunit connectedness has a positive moderation effect regarding innovation and venturing, and TMT social integration has a negative moderation effect regarding strategic renewal. This reveals that innovation is influenced by informal integration mechanisms on the organizational level, strategic renewal on top management team level, while venturing is influenced by integration mechanisms on both levels.