27 resultados para DILUTE
Resumo:
Time-resolved photoluminescence spectroscopy experiments of three poly(2,8-indenofluorene) derivatives bearing different pendant groups are presented. A comparison of the photophysical properties of dilute solutions and thin films provides information on the chemical purity of the materials. The photophysical properties of poly(2,8-indenofluorene)s are correlated with the morphological characteristics of their corresponding films. Wide-angle X-ray scattering experiments reveal the order in these materials at the molecular level. The spectroscopic results confirm the positive impact of a new synthetic approach on the spectral purity of the poly(indenofluorene)s. It is concluded that complete side-chain substitution of the bridgehead carbon atoms C-6 and C-12 in the indenofluorene unit, prior to indenofluorene ring formation, reduces the probability of keto formation. Due to the intrinsic chemical purity of the arylated derivative, identification of a long-delayed spectral feature, other than the known keto band, is possible in the case of thin films. Controlled doping experiments on the arylated derivative with trace amounts of an indenofluorene-monoketone provide quantitative information on the rates of two major photophysical processes, namely, singlet photoluminescence emission and singlet photoluminescence quenching. These results allow the determination of the minimum keto concentration that can affect the intrinsic photophysical properties of this polymer. The data suggest that photoluminescence quenching operates in the doped films according to the Stern-Volmer formalism.
Resumo:
Dewatering of microalgal culture is a major bottleneck towards the industrial-scale processing of microalgae for bio-diesel production. The dilute nature of harvested microalgal cultures poses a huge operation cost to dewater; thereby rendering microalgae-based fuels less economically attractive. This study explores the influence of microalgal growth phases and intercellular interactions during cultivation on dewatering efficiency of microalgae cultures. Experimental results show that microalgal cultures harvested during a low growth rate phase (LGRP) of 0.03 d-1 allowed a higher rate of settling than those harvested during a high growth rate phase (HGRP) of 0.11 d-1, even though the latter displayed a higher average differential biomass concentration of 0.2 g L-1 d-1. Zeta potential profile during the cultivation process showed a maximum electronegative value of -43.2 ± 0.7 mV during the HGRP which declined to stabilization at -34.5 ± 0.4 mV in the LGRP. The lower settling rate observed for HGRP microalgae is hence attributed to the high stability of the microalgal cells which electrostatically repel each other during this growth phase. Tangential flow filtration of 20 L HGRP culture concentrated 23 times by consuming 0.51 kWh/m3 of supernatant removed whilst 0.38 kWh/m3 was consumed to concentrate 20 L of LGRP by 48 times.
Resumo:
Background: Conventional biodiesel production relies on trans-esterification of lipids extracted from vegetable crops. However, the use of valuable vegetable food stocks as raw material for biodiesel production makes it an unfeasibly expensive process. Used cooking oil is a finite resource and requires extra downstream processing, which affects the amount of biodiesel that can be produced and the economics of the process. Lipids extracted from microalgae are considered an alternative raw material for biodiesel production. This is primarily due to the fast growth rate of these species in a simple aquaculture environment. However, the dilute nature of microalgae culture puts a huge economic burden on the dewatering process especially on an industrial scale. This current study explores the performance and economic viability of chemical flocculation and tangential flow filtration (TFF) for the dewatering of Tetraselmis suecicamicroalgae culture. Results: Results show that TFF concentrates the microalgae feedstock up to 148 times by consuming 2.06 kWh m-3 of energy while flocculation consumes 14.81 kWhm-3 to concentrate the microalgae up to 357 times. Economic evaluation demonstrates that even though TFF has higher initial capital investment than polymer flocculation, the payback period for TFF at the upper extreme ofmicroalgae revenue is ∼1.5 years while that of flocculation is ∼3 years. Conclusion: These results illustrate that improved dewatering levels can be achieved more economically by employing TFF. The performances of these two techniques are also compared with other dewatering techniques.
Resumo:
Background The expression of biomass-degrading enzymes (such as cellobiohydrolases) in transgenic plants has the potential to reduce the costs of biomass saccharification by providing a source of enzymes to supplement commercial cellulase mixtures. Cellobiohydrolases are the main enzymes in commercial cellulase mixtures. In the present study, a cellobiohydrolase was expressed in transgenic corn stover leaf and assessed as an additive for two commercial cellulase mixtures for the saccharification of pretreated sugar cane bagasse obtained by different processes. Results Recombinant cellobiohydrolase in the senescent leaves of transgenic corn was extracted using a simple buffer with no concentration step. The extract significantly enhanced the performance of Celluclast 1.5 L (a commercial cellulase mixture) by up to fourfold on sugar cane bagasse pretreated at the pilot scale using a dilute sulfuric acid steam explosion process compared to the commercial cellulase mixture on its own. Also, the extracts were able to enhance the performance of Cellic CTec2 (a commercial cellulase mixture) up to fourfold on a range of residues from sugar cane bagasse pretreated at the laboratory (using acidified ethylene carbonate/ethylene glycol, 1-butyl-3-methylimidazolium chloride, and ball-milling) and pilot (dilute sodium hydroxide and glycerol/hydrochloric acid steam explosion) scales. We have demonstrated using tap water as a solvent (under conditions that mimic an industrial process) extraction of about 90% recombinant cellobiohydrolase from senescent, transgenic corn stover leaf that had minimal tissue disruption. Conclusions The accumulation of recombinant cellobiohydrolase in senescent, transgenic corn stover leaf is a viable strategy to reduce the saccharification cost associated with the production of fermentable sugars from pretreated biomass. We envisage an industrial-scale process in which transgenic plants provide both fibre and biomass-degrading enzymes for pretreatment and enzymatic hydrolysis, respectively.
Resumo:
This study explores the potential use of empty fruit bunch (EFB) residues from palm oil processing residues, as an alternative feedstock for microbial oil production. EFB is a readily available, lignocellulosic biomass that provides cheaper substrates for oil production in comparison to the use of pure sugars. In this study, potential oleaginous microorganisms were selected based on a multi-criteria analysis (MCA) framework which utilised Analytical Hierarchy Process (AHP) with Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) aided by Geometrical Analysis for Interactive Aid (GAIA). The MCA framework was used to evaluate several strains of microalgae (Chlorella protothecoides and Chlorella zofingiensis), yeasts (Cryptococcus albidus and Rhodotorula mucilaginosa) and fungi (Aspergillus oryzae and Mucor plumbeus) on glucose, xylose and glycerol. Based on the results of PROMETHEE rankings and GAIA plane, fungal strains A. oryzae and M. plumbeus and yeast strain R. mucilaginosa showed great promise for oil production from lignocellulosic hydrolysates. The study further cultivated A. oryzae, M. plumbeus and R. mucilaginosa on EFB hydrolysates for oil production. EFB was pretreated with dilute sulfuric acid, followed by enzymatic saccharification of solid residue. Hydrolysates tested in this study are detoxified liquid hydrolysates (LH) and enzymatic hydrolysate (EH).
Resumo:
Electronic cigarette-generated mainstream aerosols were characterized in terms of particle number concentrations and size distributions through a Condensation Particle Counter and a Fast Mobility Particle Sizer spectrometer, respectively. A thermodilution system was also used to properly sample and dilute the mainstream aerosol. Different types of electronic cigarettes, liquid flavors, liquid nicotine contents, as well as different puffing times were tested. Conventional tobacco cigarettes were also investigated. The total particle number concentration peak (for 2-s puff), averaged across the different electronic cigarette types and liquids, was measured equal to 4.39 ± 0.42 × 109 part. cm−3, then comparable to the conventional cigarette one (3.14 ± 0.61 × 109 part. cm−3). Puffing times and nicotine contents were found to influence the particle concentration, whereas no significant differences were recognized in terms of flavors and types of cigarettes used. Particle number distribution modes of the electronic cigarette-generated aerosol were in the 120–165 nm range, then similar to the conventional cigarette one.
Resumo:
We have performed a high-resolution synchrotron radiation photoelectron spectroscopy study of the initial growth stages of the ZnPd near-surface alloy on Pd(111), complemented by scanning tunnelling microscopy data. We show that the chemical environment for surfaces containing less than half of one monolayer of Zn is chemically distinct from subsequent layers. Surfaces where the deposition is performed at room temperature contain ZnPd islands surrounded by a substrate with dilute Zn substitutions. Annealing these surfaces drives the Zn towards the substrate top-layer, and favours the completion of the first 1 : 1 monolayer before the onset of growth in the next layer.
Resumo:
The role of added sugar in a healthy diet and implications for health inequalities Sugars provide a readily available, inexpensive source of energy, can increase palatability and help preserve some foods. However added sugars also dilute the nutrient density of the diet. Further, consumption of sugar-sweetened beverages is associated with increased risk of weight gain and reduced bone strength, and high or frequent consumption of added sugars is associated with increased risk of dental caries, particularly in infants and young children. The products of the 2013 NHMRC Dietary Guidelines work program at www.eatforhealth.gov.au include the comprehensive evidence base about food, diet and health relationships and the dietary modeling used to inform recommendations. This presentation will detail the scientific evidence underpinning the revised dietary recommendations on consumption of foods and drinks containing added sugar and compare recommendations with the most recently available relevant Australian dietary intake and trend data. Differences in intakes of relevant food and drinks across quintiles of social disadvantage and in particular between Aboriginal and Torres Strait Islander groups and non-Indigenous Australians will also be explored.
Resumo:
Oil palm empty fruit bunch (EFB) is a readily available, lignocellulosic biomass that has potential to be utilized as a carbon substrate for microbial oil production. In order to evaluate the production of microbial oil from EFB, a technical study was performed through the cultivation of oleaginous micro-organisms (Rhodotorula mucilaginosa, Aspergillus oryzae, and Mucor plumbeus) on EFB hydrolyzates. EFB hydrolyzates were prepared through dilute acid pre-treatment of the biomass, where the liquid fraction of pre-treatment was detoxified and used as an EFB liquid hydrolyzate (EFBLH). The solid residue was enzymatically hydrolyzed prior to be used as an EFB enzymatic hydrolyzate (EFBEH). The highest oil concentrations were obtained from M. plumbeus (1.9 g/L of oil on EFBLH and 4.7 g/L of oil on EFBEH). In order to evaluate the feasibility of large-scale microbial oil production, a techno-economic study was performed based on the oil yields of M. plumbeus per hectare of plantation, followed by the estimation of the feedstock cost for oil production. Other oil palm biomasses (frond and trunk) were also included in this study, as it could potentially improve the economics of large-scale microbial oil production. Microbial oil from oil palm biomasses was estimated to potentially increase oil production in the palm oil industry up to 25%, at a cheaper feedstock cost. The outcome of this study demonstrates the potential integration of microbial oil production from oil palm biomasses with existing palm oil industry (biodiesel, food and oleochemicals production), that could potentially enhance sustainability and profitability of microbial oil production.
Resumo:
This study investigated the potential use of sugarcane bagasse as a feedstock for oil production through microbial cultivation. Bagasse was subjected to dilute acid pretreatment with 0.4 wt% H2SO4 (in liquid) at a solid/liquid ratio of 1:6 (wt/wt) at 170 °C for 15 min, followed by enzymatic hydrolysis of solid residue. The liquid fractions of the pretreatment process and the enzymatic hydrolysis process were detoxified and used as liquid hydrolysate (SCBLH) and enzymatic hydrolysate (SCBEH) for the microbial oil production by oleaginous yeast (Rhodotorula mucilaginosa) and filamentous fungi (Aspergillus oryzae and Mucor plumbeus). The results showed that all strains were able to grow and produce oil from bagasse hydrolysates. The highest oil concentrations produced from bagasse hydrolysates were by M. plumbeus at 1.59 g/L (SCBLH) and 4.74 g/L (SCBEH). The microbial oils obtained have similar fatty acid compositions to vegetable oils, indicating that the oil can be used for the production of second generation biodiesel. On the basis of oil yields obtained by M. plumbeus, from 10 million t (wet weight) of bagasse generated annually from sugar mills in Australia, it is estimated that the total biodiesel that could be produced would be equivalent to about 9% of Queensland’s diesel consumption.
Resumo:
ARTIST STATEMENT VIBRANTe 2.0 was inspired by a research project for Parkinson’s disease patients aimed at developing a wearable device to collect relevant data for patients and medical health professionals. Vibrante is a Spanish word that translates to vibrant; literally meaning shaking or vibrations. Vibrante also has a dual meaning including vibrancy, energy, activity, and liveliness. Parkinson’s can be a debilitating disease, but it does not mean the person has to lose energy, activeness or vibrancy. As technology moves from being worn to becoming implantable and completely hidden within the body, the very notion of its physicality becomes difficult to grasp. While the human body hides implantable technology, VIBRANTe 2.0 intentionally hides the human body by making it invisible to reveal the technology stitched within. Wires become veins, delivering lifeblood to the technology inside, allowing it to pulsate and exist, while motherboards become networked hubs by which information is transferred through and within the body, performing functions that mirror and often surpass human performance capabilities. Ultimately, VIBRANTe 2.0 seeks to prompt the viewer to reflect on the potential ramifications of the complete immersion of technology into the human body. CONTEXT Technology is increasingly penetrating all aspects of our environment, and the rapid uptake of devices that live near, on or in our bodies is facilitating radical new ways of working, relating and socialising. Such technology, with its capacity to generate previously unimaginable levels of data, offers the potential to provide life-augmenting levels of interactivity. However, the absorption of technology into the very fabric of clothes, accessories and even bodies begins to dilute boundaries between physical, technological and social spheres, generating genuine ethical and privacy concerns and potentially having implications for human evolution. Embedding technology into the fabric of our clothes, accessories, and even the body enable the acquisition of and the connection to vast amounts of data about people and environments in order to provide life-augmenting levels of interactivity. Wearable sensors for example, offer the potential for significant benefits in the future management of our wellbeing. Fitness trackers such as ‘Fitbit’ and ‘Garmen’ provide wearers with the ability to monitor their personal fitness indicators while other wearables provide healthcare professionals with information that improves diagnosis and observation of medical conditions. This exhibition aimed to illustrate this shifting landscape through a selection of experimental wearable and interactive works by local, national and international artists and designers. The exhibition will also provide a platform for broader debate around wearable technology, our mediated future-selves and human interactions in this future landscape. EXHIBITION As part of Artisan’s Wearnext exhibition, the work was on public display from 25 July to 7 November 2015 and received the following media coverage: [Please refer to Additional URLs]
Resumo:
Assessment of heavy metal bioavailability in sediments is complex because of the number of partial extraction methods available for the assessment and the general lack of certified reference materials. This study evaluates five different extraction methodologies to ascertain the relative strengths and weaknesses of each method. The results are then compared to previously published work to ascertain the most effective partial extraction technique, which was established to be dilute (0.75 – 1 M) nitric acid solutions. These results imply that single reagent; weak acid extractions provide a better assessment of potentially bioavailable metals than the chelating agents used in sequential extraction methods.